221,383 research outputs found

    A framework for invertible, real-time constant-Q transforms

    Full text link
    Audio signal processing frequently requires time-frequency representations and in many applications, a non-linear spacing of frequency-bands is preferable. This paper introduces a framework for efficient implementation of invertible signal transforms allowing for non-uniform and in particular non-linear frequency resolution. Non-uniformity in frequency is realized by applying nonstationary Gabor frames with adaptivity in the frequency domain. The realization of a perfectly invertible constant-Q transform is described in detail. To achieve real-time processing, independent of signal length, slice-wise processing of the full input signal is proposed and referred to as sliCQ transform. By applying frame theory and FFT-based processing, the presented approach overcomes computational inefficiency and lack of invertibility of classical constant-Q transform implementations. Numerical simulations evaluate the efficiency of the proposed algorithm and the method's applicability is illustrated by experiments on real-life audio signals

    A Generative Product-of-Filters Model of Audio

    Full text link
    We propose the product-of-filters (PoF) model, a generative model that decomposes audio spectra as sparse linear combinations of "filters" in the log-spectral domain. PoF makes similar assumptions to those used in the classic homomorphic filtering approach to signal processing, but replaces hand-designed decompositions built of basic signal processing operations with a learned decomposition based on statistical inference. This paper formulates the PoF model and derives a mean-field method for posterior inference and a variational EM algorithm to estimate the model's free parameters. We demonstrate PoF's potential for audio processing on a bandwidth expansion task, and show that PoF can serve as an effective unsupervised feature extractor for a speaker identification task.Comment: ICLR 2014 conference-track submission. Added link to the source cod

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Adaptive DCTNet for Audio Signal Classification

    Full text link
    In this paper, we investigate DCTNet for audio signal classification. Its output feature is related to Cohen's class of time-frequency distributions. We introduce the use of adaptive DCTNet (A-DCTNet) for audio signals feature extraction. The A-DCTNet applies the idea of constant-Q transform, with its center frequencies of filterbanks geometrically spaced. The A-DCTNet is adaptive to different acoustic scales, and it can better capture low frequency acoustic information that is sensitive to human audio perception than features such as Mel-frequency spectral coefficients (MFSC). We use features extracted by the A-DCTNet as input for classifiers. Experimental results show that the A-DCTNet and Recurrent Neural Networks (RNN) achieve state-of-the-art performance in bird song classification rate, and improve artist identification accuracy in music data. They demonstrate A-DCTNet's applicability to signal processing problems.Comment: International Conference of Acoustic and Speech Signal Processing (ICASSP). New Orleans, United States, March, 201

    On the Mathematics of Music: From Chords to Fourier Analysis

    Full text link
    Mathematics is a far reaching discipline and its tools appear in many applications. In this paper we discuss its role in music and signal processing by revisiting the use of mathematics in algorithms that can extract chord information from recorded music. We begin with a light introduction to the theory of music and motivate the use of Fourier analysis in audio processing. We introduce the discrete and continuous Fourier transforms and investigate their use in extracting important information from audio data
    corecore