1,488 research outputs found
A novel steganography approach for audio files
We present a novel robust and secure steganography technique to hide images into audio files aiming at increasing the carrier medium capacity. The audio files are in the standard WAV format, which is based on the LSB algorithm while images are compressed by the GMPR technique which is based on the Discrete Cosine Transform (DCT) and high frequency minimization encoding algorithm. The method involves compression-encryption of an image file by the GMPR technique followed by hiding it into audio data by appropriate bit substitution. The maximum number of bits without significant effect on audio signal for LSB audio steganography is 6 LSBs. The encrypted image bits are hidden into variable and multiple LSB layers in the proposed method. Experimental results from observed listening tests show that there is no significant difference between the stego audio reconstructed from the novel technique and the original signal. A performance evaluation has been carried out according to quality measurement criteria of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR)
Joyriding in the model-T era of the legal etextbook: a clone called KaZaA and 2.3 billion dollars of ebook trade
An audio encryption using transposition method
Encryption is a technique to secure sounds data from attackers. In this study, transposition technique that corresponds to a WAV file extension is used. The performance of the transposition technique is measured using the mean square error (MSE). In the test, the value of MSE of the original and encrypted audio files were compared; the original and decrypted audio files used the correct password is ‘SEMBILAN’ and the incorrect password is ‘DELAPAN’. The experimental results showed that the original and encrypted audio files, and the original and decrypted audio files used the correct password that has a value of MSE = 0, and with the incorrect one with a value of MSE 0.00000428 or ≠ 0. In other words, the transposition technique is able to ensure the security of audio data files
THE DYNAMIC CIPHERS – NEW CONCEPT OF LONG-TERM CONTENT PROTECTING
In the paper the original concept of a new cipher, targeted at this moment forcivil applications in technology (e.g. measurement and control systems) and business (e.g.content protecting, knowledge-based companies or long-term archiving systems) is presented.The idea of the cipher is based on one-time pads and linear feedback shift registers. Therapidly changing hardware and software environment of cryptographic systems has beentaken into account during the construction of the cipher. The main idea of this work is tocreate a cryptosystem that can protect content or data for a long time, even more than onehundred years. The proposed algorithm can also simulate a stream cipher which makes itpossible to apply it in digital signal processing systems such as those within audio and videodelivery or telecommunication.Content protection, Cryptosystem, Dynamic cryptography, Linear Feedback ShiftRegisters, Object-oriented programming, One-time pad, Random key, random number generators,Statistical evaluation of ciphers.
Review on DNA Cryptography
Cryptography is the science that secures data and communication over the
network by applying mathematics and logic to design strong encryption methods.
In the modern era of e-business and e-commerce the protection of
confidentiality, integrity and availability (CIA triad) of stored information
as well as of transmitted data is very crucial. DNA molecules, having the
capacity to store, process and transmit information, inspires the idea of DNA
cryptography. This combination of the chemical characteristics of biological
DNA sequences and classical cryptography ensures the non-vulnerable
transmission of data. In this paper we have reviewed the present state of art
of DNA cryptography.Comment: 31 pages, 12 figures, 6 table
Space Station communications and tracking systems modeling and RF link simulation
In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort
- …
