646,133 research outputs found
The Physio-Emotional Effects of Audio in the Global Christian Church
Audio, specifically as researched by the film industry specialists, has physical and emotional effects on those exposed to it. These effects follow from manipulation of sound’s characteristics in specific and measurable ways. The responsibility of the Christian is to share the gospel with others and support the kingdom of God with his or her skills. In light of these truths, Christian audio specialists should have a thorough knowledge of the physio-emotional effects of audio. Further, they should not shy away from applying strategies from secular audio research to benefit local churches across the globe
Effects of feedback, mobility and index of difficulty on deictic spatial audio target acquisition in the horizontal plane
We present the results of an empirical study investigating the effect of feedback, mobility and index of difficulty on a deictic spatial audio target acquisition task in the horizontal plane in front of a user. With audio feedback, spatial audio display elements are found to enable usable deictic interac-tion that can be described using Fitts law. Feedback does not affect perceived workload or preferred walking speed compared to interaction without feedback. Mobility is found to degrade interaction speed and accuracy by 20%. Participants were able to perform deictic spatial audio target acquisition when mobile while walking at 73% of their pre-ferred walking speed. The proposed feedback design is ex-amined in detail and the effects of variable target widths are quantified. Deictic interaction with a spatial audio display is found to be a feasible solution for future interface designs
A Feature Learning Siamese Model for Intelligent Control of the Dynamic Range Compressor
In this paper, a siamese DNN model is proposed to learn the characteristics
of the audio dynamic range compressor (DRC). This facilitates an intelligent
control system that uses audio examples to configure the DRC, a widely used
non-linear audio signal conditioning technique in the areas of music
production, speech communication and broadcasting. Several alternative siamese
DNN architectures are proposed to learn feature embeddings that can
characterise subtle effects due to dynamic range compression. These models are
compared with each other as well as handcrafted features proposed in previous
work. The evaluation of the relations between the hyperparameters of DNN and
DRC parameters are also provided. The best model is able to produce a universal
feature embedding that is capable of predicting multiple DRC parameters
simultaneously, which is a significant improvement from our previous research.
The feature embedding shows better performance than handcrafted audio features
when predicting DRC parameters for both mono-instrument audio loops and
polyphonic music pieces.Comment: 8 pages, accepted in IJCNN 201
Automated Audio Captioning with Recurrent Neural Networks
We present the first approach to automated audio captioning. We employ an
encoder-decoder scheme with an alignment model in between. The input to the
encoder is a sequence of log mel-band energies calculated from an audio file,
while the output is a sequence of words, i.e. a caption. The encoder is a
multi-layered, bi-directional gated recurrent unit (GRU) and the decoder a
multi-layered GRU with a classification layer connected to the last GRU of the
decoder. The classification layer and the alignment model are fully connected
layers with shared weights between timesteps. The proposed method is evaluated
using data drawn from a commercial sound effects library, ProSound Effects. The
resulting captions were rated through metrics utilized in machine translation
and image captioning fields. Results from metrics show that the proposed method
can predict words appearing in the original caption, but not always correctly
ordered.Comment: Presented at the 11th IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 201
Fractionally-addressed delay lines
While traditional implementations of variable-length digital delay lines are
based on a circular buffer accessed by two pointers, we propose an
implementation where a single fractional pointer is used both for read and
write operations. On modern general-purpose architectures, the proposed method
is nearly as efficient as the popularinterpolated circular buffer, and it
behaves well for delay-length modulations commonly found in digital audio
effects. The physical interpretation of the new implementation shows that it is
suitable for simulating tension or density modulations in wave-propagating
media.Comment: 11 pages, 19 figures, to be published in IEEE Transactions on Speech
and Audio Processing Corrected ACM-clas
- …
