418,654 research outputs found

    AUC Optimisation and Collaborative Filtering

    Get PDF
    In recommendation systems, one is interested in the ranking of the predicted items as opposed to other losses such as the mean squared error. Although a variety of ways to evaluate rankings exist in the literature, here we focus on the Area Under the ROC Curve (AUC) as it widely used and has a strong theoretical underpinning. In practical recommendation, only items at the top of the ranked list are presented to the users. With this in mind, we propose a class of objective functions over matrix factorisations which primarily represent a smooth surrogate for the real AUC, and in a special case we show how to prioritise the top of the list. The objectives are differentiable and optimised through a carefully designed stochastic gradient-descent-based algorithm which scales linearly with the size of the data. In the special case of square loss we show how to improve computational complexity by leveraging previously computed measures. To understand theoretically the underlying matrix factorisation approaches we study both the consistency of the loss functions with respect to AUC, and generalisation using Rademacher theory. The resulting generalisation analysis gives strong motivation for the optimisation under study. Finally, we provide computation results as to the efficacy of the proposed method using synthetic and real data

    Efficient AUC Optimization for Information Ranking Applications

    Full text link
    Adequate evaluation of an information retrieval system to estimate future performance is a crucial task. Area under the ROC curve (AUC) is widely used to evaluate the generalization of a retrieval system. However, the objective function optimized in many retrieval systems is the error rate and not the AUC value. This paper provides an efficient and effective non-linear approach to optimize AUC using additive regression trees, with a special emphasis on the use of multi-class AUC (MAUC) because multiple relevance levels are widely used in many ranking applications. Compared to a conventional linear approach, the performance of the non-linear approach is comparable on binary-relevance benchmark datasets and is better on multi-relevance benchmark datasets.Comment: 12 page

    Parental Income and the Choice of Participation in University, Polytechnic or Employment at Age Eighteen: A Longitudinal Study

    Get PDF
    This paper examines the link between parental income during adolescent years and higher education choices of the offspring at age 18. This study is the first to use a recent longitudinal data set from New Zealand (Christchurch Health and Development Surveys, CHDS), in the higher education context. The paper examines the impact of family income and other resources throughout adolescent years on later decisions to participate in higher education and the choice of type of tertiary education at age 18. A binary choice model of participation in education, and a multinomial choice model of the broader set of choices faced at age 18, of employment, university, or polytechnic participation are estimated. Among the features of the study are that it incorporates a number of variables, from birth to age 18, which allow us to control further than most earlier studies for ability heterogeneity, academic performance in secondary school, in addition to parental resources (e.g., childhood IQ, nationally comparable high school academic performance, peer effects, family size and family financial information over time). The results highlight useful features of intergenerational participation in higher education, and the effect of parental income on university education, in particular.Parental Income, Demand for Higher Education, Longitudinal

    Efficient estimation of AUC in a sliding window

    Full text link
    In many applications, monitoring area under the ROC curve (AUC) in a sliding window over a data stream is a natural way of detecting changes in the system. The drawback is that computing AUC in a sliding window is expensive, especially if the window size is large and the data flow is significant. In this paper we propose a scheme for maintaining an approximate AUC in a sliding window of length kk. More specifically, we propose an algorithm that, given ϵ\epsilon, estimates AUC within ϵ/2\epsilon / 2, and can maintain this estimate in O((logk)/ϵ)O((\log k) / \epsilon) time, per update, as the window slides. This provides a speed-up over the exact computation of AUC, which requires O(k)O(k) time, per update. The speed-up becomes more significant as the size of the window increases. Our estimate is based on grouping the data points together, and using these groups to calculate AUC. The grouping is designed carefully such that (ii) the groups are small enough, so that the error stays small, (iiii) the number of groups is small, so that enumerating them is not expensive, and (iiiiii) the definition is flexible enough so that we can maintain the groups efficiently. Our experimental evaluation demonstrates that the average approximation error in practice is much smaller than the approximation guarantee ϵ/2\epsilon / 2, and that we can achieve significant speed-ups with only a modest sacrifice in accuracy
    corecore