53,749 research outputs found
Folding and insertion thermodynamics of the transmembrane WALP peptide
The anchor of most integral membrane proteins consists of one or several
helices spanning the lipid bilayer. The WALP peptide, GWW(LA)(L)WWA, is a
common model helix to study the fundamentals of protein insertion and folding,
as well as helix-helix association in the membrane. Its structural properties
have been illuminated in a large number of experimental and simulation studies.
In this combined coarse-grained and atomistic simulation study, we probe the
thermodynamics of a single WALP peptide, focusing on both the insertion across
the water-membrane interface, as well as folding in both water and a membrane.
The potential of mean force characterizing the peptide's insertion into the
membrane shows qualitatively similar behavior across peptides and three force
fields. However, the Martini force field exhibits a pronounced secondary
minimum for an adsorbed interfacial state, which may even become the global
minimum---in contrast to both atomistic simulations and the alternative PLUM
force field. Even though the two coarse-grained models reproduce the free
energy of insertion of individual amino acids side chains, they both
underestimate its corresponding value for the full peptide (as compared with
atomistic simulations), hinting at cooperative physics beyond the residue
level. Folding of WALP in the two environments indicates the helix as the most
stable structure, though with different relative stabilities and chain-length
dependence.Comment: 12 pages, 5 figure
Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties
We develop coarse-grained force fields for poly (vinyl alcohol) and poly
(acrylic acid) oligomers. In both cases, one monomer is mapped onto a
coarse-grained bead. The new force fields are designed to match structural
properties such as radial distribution functions of various kinds derived by
atomistic simulations of these polymers. The mapping is therefore constructed
in a way to take into account as much atomistic information as possible. On the
technical side, our approach consists of a simplex algorithm which is used to
optimize automatically non-bonded parameters as well as bonded parameters.
Besides their similar conformation (only the functional side group differs),
poly (acrylic acid) was chosen to be in aqueous solution in contrast to a poly
(vinyl alcohol) melt. For poly (vinyl alcohol) a non-optimized bond angle
potential turns out to be sufficient in connection with a special, optimized
non-bonded potential. No torsional potential has to be applied here. For poly
(acrylic acid), we show that each peak of the radial distribution function is
usually dominated by some specific model parameter(s). Optimization of the bond
angle parameters is essential. The coarse-grained forcefield reproduces the
radius of gyration of the atomistic model. As a first application, we use the
force field to simulate longer chains and compare the hydrodynamic radius with
experimental data.Comment: 34 pages, 3 tables, 16 figure
Finite Sized Atomistic Simulations of Screw Dislocations
The interaction of screw dislocations with an applied stress is studied using
atomistic simulations in conjunction with a continuum treatment of the role
played by the far field boundary condition. A finite cell of atoms is used to
consider the response of dislocations to an applied stress and this introduces
an additional force on the dislocation due to the presence of the boundary.
Continuum mechanics is used to calculate the boundary force which is
subsequently accounted for in the equilibrium condition for the dislocation.
Using this formulation, the lattice resistance curve and the associated Peierls
stress are calculated for screw dislocations in several close packed metals. As
a concrete example of the boundary force method, we compute the bow out of a
pinned screw dislocation; the line-tension of the dislocation is calculated
from the results of the atomistic simulations using a variational principle
that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure
Polarizability Versus Mobility: Atomistic Force Field for Ionic Liquids
Based on classical molecular dynamics simulations, we discuss the impact of
Coulombic interactions on a comprehensive set of properties of room temperature
ionic liquids (RTILs) containing 1,3 dimethylimidazolium (MMIM+), N
butylpyridinium (BPY+), and bis(trifluoromethane sulfonyl)imide (TFSI-) ions.
Ionic transport is found to be noticeably hindered by the excessive Coulombic
energy, originating from the neglect of electronic polarization in the
condensed phase of these RTILs. Starting from the models, recently suggested by
Lopes and Padua, we show that realistic ionic dynamics can be achieved by the
uniform scaling of electrostatic charges on all interaction sites. The original
model systematically overestimates density and heat of vaporization of RTILs.
Since density linearly depends on charge scaling, it is possible to use it as a
convenient beacon to promptly derive a correct scaling factor. Based on the
simulations of [BPY][TFSI] and [MMIM][TFSI] over a wide temperature range, we
conclude that suggested technique is feasible to greatly improve quality of the
already existing non-polarizable FFs for RTILs
Nonadiabatic Study of Dynamic Electronic Effects during Brittle Fracture of Silicon
It has long been observed that brittle fracture of materials can lead to emission of high energy electrons and UV photons, but an atomistic description of the origin of such processes has lacked. We report here on simulations using a first-principles-based electron force field methodology with effective core potentials to describe the nonadiabatic quantum dynamics during brittle fracture in silicon crystal. Our simulations replicate the correct response of the crack tip velocity to the threshold critical energy release rate, a feat that is inaccessible to quantum mechanics methods or conventional force-field-based molecular dynamics. We also describe the crack induced voltages, current bursts, and charge carrier production observed experimentally during fracture but not previously captured in simulations. We find that strain-induced surface rearrangements and local heating cause ionization of electrons at the fracture surfaces
The Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties
Reliable force field (FF) is a central issue in successful prediction of
physical chemical properties via computer simulations
Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties
We develop coarse-grained force fields for poly (vinyl alcohol) and poly
(acrylic acid) oligomers. In both cases, one monomer is mapped onto a
coarse-grained bead. The new force fields are designed to match structural
properties such as radial distribution functions of various kinds derived by
atomistic simulations of these polymers. The mapping is therefore constructed
in a way to take into account as much atomistic information as possible. On the
technical side, our approach consists of a simplex algorithm which is used to
optimize automatically non-bonded parameters as well as bonded parameters.
Besides their similar conformation (only the functional side group differs),
poly (acrylic acid) was chosen to be in aqueous solution in contrast to a poly
(vinyl alcohol) melt. For poly (vinyl alcohol) a non-optimized bond angle
potential turns out to be sufficient in connection with a special, optimized
non-bonded potential. No torsional potential has to be applied here. For poly
(acrylic acid), we show that each peak of the radial distribution function is
usually dominated by some specific model parameter(s). Optimization of the bond
angle parameters is essential. The coarse-grained forcefield reproduces the
radius of gyration of the atomistic model. As a first application, we use the
force field to simulate longer chains and compare the hydrodynamic radius with
experimental data.Comment: 34 pages, 3 tables, 16 figure
- …
