218,232 research outputs found
Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation
The method of surface preparation on n-type GaAs, even with the presence of an amorphous-Si interfacial passivation layer, is shown to be a critical step in the removal of accumulation capacitance frequency dispersion. In situ deposition and analysis techniques were used to study different surface preparations, including NH4OH, Si-flux, and atomic hydrogen exposures, as well as Si passivation depositions prior to in situ atomic layer deposition of Al2O3. As–O bonding was removed and a bond conversion process with Si deposition is observed. The accumulation capacitance frequency dispersion was removed only when a Si interlayer and a specific surface clean were combined
ZnO layers deposited by Atomic Layer Deposition
The structure of 40 nm thick epitaxial ZnO layers grown on single crystalline
sapphire and GaN substrates by atomic layer deposition has been studied using transmission
electron microscopy. The growth is carried out between 150°C and 300°C without any buffer
layer using di-ethyl zinc and water precursors. The ZnO layer on sapphire is found to be
polycrystalline, which is probably due to the large misfit (~15 %) and the relatively low
deposition temperature. However, the small misfit (~1.8 %) between the ZnO layer that is
deposited on GaN at 300°C resulted in a high quality single crystalline layer
Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures
We report on suspended single-layer graphene deposition by a
transfer-printing approach based on polydimethylsiloxane stamps. The transfer
printing method allows the exfoliation of graphite flakes from a bulk graphite
sample and their residue-free deposition on a silicon dioxide substrate. This
deposition system creates a blistered graphene surface due to strain induced by
the transfer process itself. Single-layer-graphene deposition and its
"blistering" on the substrate are demonstrated by a combination of Raman
spectroscopy, scanning electron microscopy and atomic-force microscopy
measurements. Finally, we demonstrate that blister-like suspended graphene are
self-supporting single-layer structures and can be flattened by employing a
spatially-resolved direct-lithography technique based on electron-beam induced
etching.Comment: 17 pages, 5 figure
Atomic layer deposition of ZnS nanotubes
We report on growth of high-aspect-ratio () zinc sulfide
nanotubes with variable, precisely tunable, wall thicknesses and tube diameters
into highly ordered pores of anodic alumina templates by atomic layer
deposition (ALD) at temperatures as low as 75 C. Various
characterization techniques are employed to gain information on the
composition, morphology, and crystal structure of the synthesized samples.
Besides practical applications, the ALD-grown tubes could be envisaged as model
systems for the study of a certain class of size-dependent quantum and
classical phenomena.Comment: 1 LaTeX source file, 8 eps figures, and the manuscript in PDF forma
Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers
Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have
been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with
atomic layer control. We observe a shift in the magnetic hysteresis loop of the
LSMO layer in the same direction as the applied biasing field (positive
exchange bias). The effect is not present above the Curie temperature of the
SRO layer (), and its magnitude increases rapidly as the temperature is lowered
below . The direction of the shift is consistent with an antiferromagnetic
exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic
SRO layer. We propose that atomic layer charge transfer modifies the electronic
state at the interface, resulting in the observed antiferromagnetic interfacial
exchange coupling.Comment: accepted to Applied Physics Letter
GaAs interfacial self-cleaning by atomic layer deposition
The reduction and removal of surface oxides from GaAs substrates by atomic layer deposition (ALD) of Al2O3 and HfO2 are studied using in situ monochromatic x-ray photoelectron spectroscopy. Using the combination of in situ deposition and analysis techniques, the interfacial "self-cleaning" is shown to be oxidation state dependent as well as metal organic precursor dependent. Thermodynamics, charge balance, and oxygen coordination drive the removal of certain species of surface oxides while allowing others to remain. These factors suggest proper selection of surface treatments and ALD precursors can result in selective interfacial bonding arrangements
Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors
We report the development of nanowire field-effect transistors featuring an
ultra-thin parylene film as a polymer gate insulator. The room temperature,
gas-phase deposition of parylene is an attractive alternative to oxide
insulators prepared at high temperatures using atomic layer deposition. We
discuss our custom-built parylene deposition system, which is designed for
reliable and controlled deposition of <100 nm thick parylene films on III-V
nanowires standing vertically on a growth substrate or horizontally on a device
substrate. The former case gives conformally-coated nanowires, which we used to
produce functional -gate and gate-all-around structures. These give
sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding at
room temperature. For the gate-all-around structure, we developed a novel
fabrication strategy that overcomes some of the limitations with previous
lateral wrap-gate nanowire transistors. Finally, we show that parylene can be
deposited over chemically-treated nanowire surfaces; a feature generally not
possible with oxides produced by atomic layer deposition due to the surface
`self-cleaning' effect. Our results highlight the potential for parylene as an
alternative ultra-thin insulator in nanoscale electronic devices more broadly,
with potential applications extending into nanobioelectronics due to parylene's
well-established biocompatible properties
Ultrathin Oxide Films by Atomic Layer Deposition on Graphene
In this paper, a method is presented to create and characterize mechanically
robust, free standing, ultrathin, oxide films with controlled, nanometer-scale
thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films
were deposited onto suspended graphene membranes using ALD. Subsequent etching
of the graphene left pure aluminum oxide films only a few atoms in thickness. A
pressurized blister test was used to determine that these ultrathin films have
a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much
thicker alumina ALD films. This behavior indicates that these ultrathin
two-dimensional films have excellent mechanical integrity. The films are also
impermeable to standard gases suggesting they are pinhole-free. These
continuous ultrathin films are expected to enable new applications in fields
such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted
Transfer of Graphene with Protective Oxide Layers
Transfer of graphene, grown by Chemical Vapor Deposition (CVD), to a
substrate of choice, typically involves deposition of a polymeric layer
(typically, poly(methyl methacrylate, PMMA or polydimethylsiloxane, PDMS).
These polymers are quite hard to remove without leaving some residues behind.
Here we study a transfer of graphene with a protective thin oxide layer. The
thin oxide layer is grown by Atomic Deposition Layer (ALD) on the graphene
right after the growth stage on Cu foils. One can further aid the
oxide-graphene transfer by depositing a very thin polymer layer on top of the
composite (much thinner than the usual thickness) following by a more
aggressive polymeric removal methods, thus leaving the graphene intact. We
report on the nucleation growth process of alumina and hafnia films on the
graphene, their resulting strain and on their optical transmission. We suggest
that hafnia is a better oxide to coat the graphene than alumina in terms of
uniformity and defects.Comment: 13 pgs, 13 figure
- …
