864,184 research outputs found

    A near-optimal approximation algorithm for Asymmetric TSP on embedded graphs

    Full text link
    We present a near-optimal polynomial-time approximation algorithm for the asymmetric traveling salesman problem for graphs of bounded orientable or non-orientable genus. Our algorithm achieves an approximation factor of O(f(g)) on graphs with genus g, where f(n) is the best approximation factor achievable in polynomial time on arbitrary n-vertex graphs. In particular, the O(log(n)/loglog(n))-approximation algorithm for general graphs by Asadpour et al. [SODA 2010] immediately implies an O(log(g)/loglog(g))-approximation algorithm for genus-g graphs. Our result improves the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi [SODA 2011], which applies only to graphs with orientable genus g; ours is the first approximation algorithm for graphs with bounded non-orientable genus. Moreover, using recent progress on approximating the genus of a graph, our O(log(g) / loglog(g))-approximation can be implemented even without an embedding when the input graph has bounded degree. In contrast, the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi requires a genus-g embedding as part of the input. Finally, our techniques lead to a O(1)-approximation algorithm for ATSP on graphs of genus g, with running time 2^O(g)*n^O(1)

    An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem

    Full text link
    We obtain a 1.5-approximation algorithm for the metric uncapacitated facility location problem (UFL), which improves on the previously best known 1.52-approximation algorithm by Mahdian, Ye and Zhang. Note, that the approximability lower bound by Guha and Khuller is 1.463. An algorithm is a {\em (λf\lambda_f,λc\lambda_c)-approximation algorithm} if the solution it produces has total cost at most λfF+λcC\lambda_f \cdot F^* + \lambda_c \cdot C^*, where FF^* and CC^* are the facility and the connection cost of an optimal solution. Our new algorithm, which is a modification of the (1+2/e)(1+2/e)-approximation algorithm of Chudak and Shmoys, is a (1.6774,1.3738)-approximation algorithm for the UFL problem and is the first one that touches the approximability limit curve (γf,1+2eγf)(\gamma_f, 1+2e^{-\gamma_f}) established by Jain, Mahdian and Saberi. As a consequence, we obtain the first optimal approximation algorithm for instances dominated by connection costs. When combined with a (1.11,1.7764)-approximation algorithm proposed by Jain et al., and later analyzed by Mahdian et al., we obtain the overall approximation guarantee of 1.5 for the metric UFL problem. We also describe how to use our algorithm to improve the approximation ratio for the 3-level version of UFL.Comment: A journal versio

    A 2.75-Approximation Algorithm for the Unconstrained Traveling Tournament Problem

    Full text link
    A 2.75-approximation algorithm is proposed for the unconstrained traveling tournament problem, which is a variant of the traveling tournament problem. For the unconstrained traveling tournament problem, this is the first proposal of an approximation algorithm with a constant approximation ratio. In addition, the proposed algorithm yields a solution that meets both the no-repeater and mirrored constraints. Computational experiments show that the algorithm generates solutions of good quality.Comment: 12 pages, 1 figur
    corecore