864,184 research outputs found
A near-optimal approximation algorithm for Asymmetric TSP on embedded graphs
We present a near-optimal polynomial-time approximation algorithm for the
asymmetric traveling salesman problem for graphs of bounded orientable or
non-orientable genus. Our algorithm achieves an approximation factor of O(f(g))
on graphs with genus g, where f(n) is the best approximation factor achievable
in polynomial time on arbitrary n-vertex graphs. In particular, the
O(log(n)/loglog(n))-approximation algorithm for general graphs by Asadpour et
al. [SODA 2010] immediately implies an O(log(g)/loglog(g))-approximation
algorithm for genus-g graphs. Our result improves the
O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi [SODA
2011], which applies only to graphs with orientable genus g; ours is the first
approximation algorithm for graphs with bounded non-orientable genus.
Moreover, using recent progress on approximating the genus of a graph, our
O(log(g) / loglog(g))-approximation can be implemented even without an
embedding when the input graph has bounded degree. In contrast, the
O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi requires a
genus-g embedding as part of the input.
Finally, our techniques lead to a O(1)-approximation algorithm for ATSP on
graphs of genus g, with running time 2^O(g)*n^O(1)
An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem
We obtain a 1.5-approximation algorithm for the metric uncapacitated facility
location problem (UFL), which improves on the previously best known
1.52-approximation algorithm by Mahdian, Ye and Zhang. Note, that the
approximability lower bound by Guha and Khuller is 1.463.
An algorithm is a {\em (,)-approximation algorithm} if
the solution it produces has total cost at most , where and are the facility and the connection
cost of an optimal solution. Our new algorithm, which is a modification of the
-approximation algorithm of Chudak and Shmoys, is a
(1.6774,1.3738)-approximation algorithm for the UFL problem and is the first
one that touches the approximability limit curve
established by Jain, Mahdian and Saberi. As a consequence, we obtain the first
optimal approximation algorithm for instances dominated by connection costs.
When combined with a (1.11,1.7764)-approximation algorithm proposed by Jain et
al., and later analyzed by Mahdian et al., we obtain the overall approximation
guarantee of 1.5 for the metric UFL problem. We also describe how to use our
algorithm to improve the approximation ratio for the 3-level version of UFL.Comment: A journal versio
A 2.75-Approximation Algorithm for the Unconstrained Traveling Tournament Problem
A 2.75-approximation algorithm is proposed for the unconstrained traveling
tournament problem, which is a variant of the traveling tournament problem. For
the unconstrained traveling tournament problem, this is the first proposal of
an approximation algorithm with a constant approximation ratio. In addition,
the proposed algorithm yields a solution that meets both the no-repeater and
mirrored constraints. Computational experiments show that the algorithm
generates solutions of good quality.Comment: 12 pages, 1 figur
- …
