2,459,140 research outputs found

    Approximation Schemes for Partitioning: Convex Decomposition and Surface Approximation

    Full text link
    We revisit two NP-hard geometric partitioning problems - convex decomposition and surface approximation. Building on recent developments in geometric separators, we present quasi-polynomial time algorithms for these problems with improved approximation guarantees.Comment: 21 pages, 6 figure

    The Matrix Ridge Approximation: Algorithms and Applications

    Full text link
    We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call {matrix ridge approximation}. In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful

    Hybrid spherical approximation

    Full text link
    In this paper a local approximation method on the sphere is presented. As interpolation scheme we consider a partition of unity method, such as the modified spherical Shepard's method, which uses zonal basis functions (ZBFs) plus spherical harmonics as local approximants. Moreover, a spherical zone algorithm is efficiently implemented, which works well also when the amount of data is very large, since it is based on an optimized searching procedure. Numerical results show good accuracy of the method, also on real geomagnetic data

    The Zeldovich approximation

    Full text link
    This year marks the 100th anniversary of the birth of Yakov Zel'dovich. Amongst his many legacies is the Zel'dovich approximation for the growth of large-scale structure, which remains one of the most successful and insightful analytic models of structure formation. We use the Zel'dovich approximation to compute the two-point function of the matter and biased tracers, and compare to the results of N-body simulations and other Lagrangian perturbation theories. We show that Lagrangian perturbation theories converge well and that the Zel'dovich approximation provides a good fit to the N-body results except for the quadrupole moment of the halo correlation function. We extend the calculation of halo bias to 3rd order and also consider non-local biasing schemes, none of which remove the discrepancy. We argue that a part of the discrepancy owes to an incorrect prediction of inter-halo velocity correlations. We use the Zel'dovich approximation to compute the ingredients of the Gaussian streaming model and show that this hybrid method provides a good fit to clustering of halos in redshift space down to scales of tens of Mpc.Comment: 11 pages, 7 figures. Minor modifications to match version accepted by MNRAS. Erratum added to shear equations in Appendix, no conclusions change

    A near-optimal approximation algorithm for Asymmetric TSP on embedded graphs

    Full text link
    We present a near-optimal polynomial-time approximation algorithm for the asymmetric traveling salesman problem for graphs of bounded orientable or non-orientable genus. Our algorithm achieves an approximation factor of O(f(g)) on graphs with genus g, where f(n) is the best approximation factor achievable in polynomial time on arbitrary n-vertex graphs. In particular, the O(log(n)/loglog(n))-approximation algorithm for general graphs by Asadpour et al. [SODA 2010] immediately implies an O(log(g)/loglog(g))-approximation algorithm for genus-g graphs. Our result improves the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi [SODA 2011], which applies only to graphs with orientable genus g; ours is the first approximation algorithm for graphs with bounded non-orientable genus. Moreover, using recent progress on approximating the genus of a graph, our O(log(g) / loglog(g))-approximation can be implemented even without an embedding when the input graph has bounded degree. In contrast, the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi requires a genus-g embedding as part of the input. Finally, our techniques lead to a O(1)-approximation algorithm for ATSP on graphs of genus g, with running time 2^O(g)*n^O(1)
    corecore