36,057 research outputs found

    The repeatability of the abbreviated (4-h) Oral Fat Tolerance Test and influence of prior acute aerobic exercise

    Get PDF
    © 2016 The Author(s) Purpose: The Oral Fat Tolerance Test (OFTT) is regarded as a repeatable measure used to assess postprandial triglyceride (TAG) levels, with higher levels observed in cardio-metabolic disorders. Acute aerobic exercise intervention before OFTT reduces the TAG response, but the repeatability of this effect is unknown. The aim of this study was to determine the repeatability of the abbreviated 4-h OFTT with and without immediate prior aerobic exercise. Methods: On four separate days, healthy adult male participants underwent two 4-h OFTT (n = 10) and another two 4-h OFTT with 1-h of standardised moderate intensity aerobic exercise performed immediately before meal ingestion (n = 11). The OFTT meal composition included 75.4 g total fat, 21.7 g carbohydrate and 13.7 g protein. Venous blood was sampled at baseline and hourly up to 4 h after the OFTT meal ingestion, and TAG area under the curve (AUC) was calculated. Results: Nonparametric Bland–Altman analysis of 4-h TAG AUC revealed that 9 of 10 repeat measurements fell within ±15 % of the median TAG AUC for the OFTT. By contrast, two of 11 repeat measurements fell within ±15 % of the median TAG AUC for the OFTT undertaken with 1-h prior aerobic exercise. Conclusions: The 4-h OFTT is a repeatable test of postprandial TAG responses in healthy men. However, aerobic exercise performed immediately before OFTT considerably increases the variability of TAG AUC. These findings have implications for interpretation of research studies investigating exercise intervention performed immediately before OFTT. Future studies should also investigate the repeatability of exercise performed 8–24 h before OFTT

    Glycomic analysis of high density lipoprotein shows a highly sialylated particle.

    Get PDF
    Many of the functional proteins and lipids in high density lipoprotein (HDL) particles are potentially glycosylated, yet very little is known about the glycoconjugates of HDL. In this study, HDL was isolated from plasma by sequential micro-ultracentrifugation, followed by glycoprotein and glycolipid analysis. N-Glycans, glycopeptides, and gangliosides were extracted and purified followed by analysis with nano-HPLC Chip quadrupole time of flight mass spectrometry and MS/MS. HDL particles were found to be highly sialylated. Most of the N-glycans (∼90%) from HDL glycoproteins were sialylated with one or two neuraminic acids (Neu5Ac). The most abundant N-glycan was a biantennary complex type glycan with two sialic acids (Hexose5HexNAc4Neu5Ac2) and was found in multiple glycoproteins using site-specific glycosylation analysis. The observed O-glycans were all sialylated, and most contained a core 1 structure with two Neu5Acs, including those that were associated with apolipoprotein CIII (ApoC-III) and fetuin A. GM3 (monosialoganglioside, NeuAc2-3Gal1-4Glc-Cer) and GD3 (disialoganglioside, NeuAc2-8NeuAc2-3Gal1-4Glc-Cer) were the major gangliosides in HDL. A 60% GM3 and 40% GD3 distribution was observed. Both GM3 and GD3 were composed of heterogeneous ceramide lipid tails, including d18:1/16:0 and d18:1/23:0. This report describes for the first time a glycomic approach for analyzing HDL, highlighting that HDL are highly sialylated particles

    Hepatitis C virus relies on lipoproteins for its life cycle

    Get PDF
    Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production

    The secondary structure of apolipoprotein A-I on 9.6-nm reconstituted high-density lipoprotein determined by EPR spectroscopy.

    Get PDF
    Apolipoprotein A-I (ApoA-I) is the major protein component of high-density lipoprotein (HDL), and is critical for maintenance of cholesterol homeostasis. During reverse cholesterol transport, HDL transitions between an array of subclasses, differing in size and composition. This process requires ApoA-I to adapt to changes in the shape of the HDL particle, transiting from an apolipoprotein to a myriad of HDL subclass-specific conformations. Changes in ApoA-I structure cause alterations in HDL-specific enzyme and receptor-binding properties, and thereby direct the HDL particle through the reverse cholesterol transport pathway. In this study, we used site-directed spin label spectroscopy to examine the conformational details of the ApoA-I central domain on HDL. The motional dynamics and accessibility to hydrophobic/hydrophilic relaxation agents of ApoA-I residues 99-163 on 9.6-nm reconstituted HDL was analyzed by EPR. In previous analyses, we examined residues 6-98 and 164-238 (of ApoA-I's 243 residues), and combining these findings with the current results, we have generated a full-length map of the backbone structure of reconstituted HDL-associated ApoA-I. Remarkably, given that the majority of ApoA-I's length is composed of amphipathic helices, we have identified nonhelical residues, specifically the presence of a β-strand (residues 149-157). The significance of these nonhelical residues is discussed, along with the other features, in the context of ApoA-I function in contrast to recent models derived by other methods

    Roles of reconstituted high-density lipoprotein nanoparticles in cardiovascular disease: A new paradigm for drug discovery

    Get PDF
    Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that HDLs are atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL cholesterol (HDL-C) levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP) inhibitors, failed to ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of cardiovascular disease (CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were shifted to increasing the number of HDL particles capable of promoting ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux. One such approach was the development of reconstituted HDL (rHDL) particles that promote ABCA1-mediated cholesterol efflux from lipid-enriched macrophages. Here, we explore the manipulation of rHDL nanoparticles as a strategy for the treatment of CVD. In addition, we discuss technological capabilities and the challenge of relating preclinical in vivo mice research to clinical studies. Finally, by drawing lessons from developing rHDL nanoparticles, we also incorporate the viabilities and advantages of the development of a molecular imaging probe with HDL nanoparticles when applied to ASCVD, as well as gaps in technology and knowledge required for putting the HDL-targeted therapeutics into full gear

    Agarose gel serum protein electrophoresis in cats with and without lymphoma and preliminary results of tandem mass fingerprinting analysis

    Get PDF
    <b>Background</b>: Serum electrophoretic profiles in cats are poorly characterized with respect to the protein components of the globulin fractions, and interpretation of the electrophoretograms has routinely been done in ignorance of the identity of the proteins found within each fraction. <b>Objectives</b>: To compare the protein fractions from serum protein electrophoresis (SPE) in healthy cats and those with lymphoma and to confirm some component proteins in the major fractions after feline SPE, using tandem mass fingerprinting analysis (TMFA). <b>Methods</b>: Total protein was measured and agarose gel SPE performed on blood collected from 14 healthy cats and 14 with lymphoma. The absolute protein concentration within each fraction was compared between the two groups. Bands corresponding to the SPE fractions were excised from two controls and a lymphoma cat and analysed by liquid chromatography coupled to mass spectrometry. Results were compared to sequences in the NCBI protein database. <b>Results</b>: Median albumin concentrations were significantly decreased in lymphoma cats and median beta globulin concentrations were elevated. Narrow electrophoretic spikes were present in the beta/gamma fraction in 3 lymphoma cats. Following TMFA, multiple proteins were identified from each fraction and their mobility agreed with results from previous studies generated using alternative techniques. Inter–alpha (globulin) inhibitor 4 was identified in feline serum for the first time. <b>Conclusions</b>: Cats with lymphoma had lower median albumin and higher beta globulin concentrations than healthy cats. Despite the limitations of 1D agarose gel SPE, TMFA provided preliminary data to confirm the protein components of the various fractio

    Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease

    Get PDF
    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual’s quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology

    High Density Lipoproteins Inhibit Oxidative Stress-Induced Prostate Cancer Cell Proliferation

    Get PDF
    Recent evidence suggests that oxidative stress can play a role in the pathogenesis and the progression of prostate cancer (PCa). Reactive oxygen species (ROS) generation is higher in PCa cells compared to normal prostate epithelial cells and this increase is proportional to the aggressiveness of the phenotype. Since high density lipoproteins (HDL) are known to exert antioxidant activities, their ability to reduce ROS levels and the consequent impact on cell proliferation was tested in normal and PCa cell lines. HDL significantly reduced basal and H2O2-induced oxidative stress in normal, androgen receptor (AR)-positive and AR-null PCa cell lines. AR, scavenger receptor BI and ATP binding cassette G1 transporter were not involved. In addition, HDL completely blunted H2O2-induced increase of cell proliferation, through their capacity to prevent the H2O2-induced shift of cell cycle distribution from G0/G1 towards G2/M phase. Synthetic HDL, made of the two main components of plasma-derived HDL (apoA-I and phosphatidylcholine) and which are under clinical development as anti-atherosclerotic agents, retained the ability of HDL to inhibit ROS production in PCa cells. Collectively, HDL antioxidant activity limits cell proliferation induced by ROS in AR-positive and AR-null PCa cell lines, thus supporting a possible role of HDL against PCa progression
    corecore