241,907 research outputs found

    Anticancer activity of rutin and its combination with ionic liquids on renal cells

    Get PDF
    The renal cell carcinoma (RCC) is the most common type of kidney cancer. Identifying novel and more effective therapies, while minimizing toxicity, continues to be fundamental in curtailing RCC. Rutin, a bioflavonoid widely found in nature, has shown promising anticancer properties, but with limited applicability due to its poor water solubility and pharmacokinetics. Thus, the potential anticancer effects of rutin toward a human renal cancer cell line (786-O), while considering its safety in Vero kidney cells, was assessed, as well as the applicability of ionic liquids (ILs) to improve drug delivery. Rutin (up to 50 µM) did not show relevant cytotoxic effects in Vero cells. However, in 786-O cells, a significant decrease in cell viability was already observed at 50 µM. Moreover, exposure to rutin caused a significant increase in the sub-G1 population of 786-O cells, reinforcing the possible anticancer activity of this biomolecule. Two choline-amino acid ILs, at non-toxic concentrations, enhanced rutin's solubility/loading while allowing the maintenance of rutin's anticancer effects. Globally, our findings suggest that rutin may have a beneficial impact against RCC and that its combination with ILs ensures that this poorly soluble drug is successfully incorporated into ILs-nanoparticles hybrid systems, allowing controlled drug delivery.Fundação para a Ciência e Tecnologia (FCT, Portugal): UID/DTP/04567/2019/ UIDB/00100/2020/ UIDB/04565/2020. ALIES grant PADDIC 2018-2019info:eu-repo/semantics/publishedVersio

    Dissecting apoptosis the omics way

    Get PDF
    A combined analysis of transcription, translation and protein degradation reveals the global effects of an anticancer drug on tumour cells

    A Systematic Review of Iran’s Medicinal Plants With Anticancer Effects

    Get PDF
    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants’ anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. © 2015, © The Author(s) 2015

    Inhibition of Melanoma Angiogenesis by Telomere Homolog Oligonucleotides

    Get PDF
    Telomere homolog oligonucleotides (T-oligos) activate an innate telomere-based program that leads to multiple anticancer effects. T-oligos act at telomeres to initiate signaling through the Werner protein and ATM kinase. We wanted to determine if T-oligos have antiangiogenic effects. We found that T-oligo-treated human melanoma (MM-AN) cells had decreased expression of vascular endothelial growth factor (VEGF), VEGF receptor 2, angiopoeitin-1 and -2 and decreased VEGF secretion. T-oligos activated the transcription factor E2F1 and inhibited the activity of the angiogenic transcription factor, HIF-1α. T-oligos inhibited EC tubulogenesis and total tumor microvascular density matrix invasion by MM-AN cells and ECs in vitro. In melanoma SCID xenografts, two systemic T-oligo injections decreased by 60% (P<.004) total tumor microvascular density and the functional vessels density by 80% (P <.002). These findings suggest that restriction of tumor angiogenesis is among the host's innate telomere-based anticancer responses and provide further evidence that T-oligos may offer a powerful new approach for melanoma treatment.National Institutes of Health (CA10515); American Skin Associatio

    Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs

    Get PDF
    This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy

    Berberine and Coptidis Rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations

    Get PDF
    Ethnopharmacological relevance: Coptidis Rhizoma (Huanglian) and its major component, berberine, have drawn extensive attention toward their antineoplastic effects in the recent years. The antineoplastic effects are related to the Chinese Medicine (CM) properties of Huangliang in treating diseases by removing damp-heat and purging fire and counteracting toxicity. Aim of the review: To trace the long history of the traditional use of Huanglian from folk medicines, especially from Chinese medicine, to recent pharmacological studies of Huanglian and berberine, with an emphasis on their antineoplastic effects and the promise as novel antineoplastic agents. Methods: A total of seven databases were extensively searched for literature research. The terms and keywords for searching included Huanglian, berberine, Coptis, Coptidis Rhizoma, anticancer, anti-invasion, antimatastasis and mechanism. The papers including ours with studies on anticancer and mechanism, pharmacology and toxicology of Huanglian and/or berberine were focused. Results: In view of traditional use, the anticancer effects of Huanglian can be ascribed to its CM trait by removing damp-heat, fire and toxicity. From modern biomedical studies, anticancer effects have been demonstrated in both Huanglian and berberine. The underlying molecular mechanisms involve cell-cycle arrest, apoptosis induction and anti-inflammation. Berberine is an essential anticancer compound in Huanglian. In some studies, the use of Huanglian was shown to be more effective and beneficial than the use of berberine alone. The presence of other protoberberine-type alkaloids in Huanglian might give synergistic effects for the anticancer effects. Berberine also demonstrates effects of antiangiogenesis, anti-invasion and anti-metastasis in some cancer cell lines, however, more investigations are required to unravel the underlying mechanisms involved. Conclusions: The modern evidences of treating cancer with Huanglian and berberine have a strong linkage with traditional concept and rules of using Huanglian in CM practice. As anticancer candidates with low toxicity, berberine and its altered structure, as well as Huanglian and its formulae, will attract scientists to pursue the potential anticancer effects and the mechanisms by using technologies of genomics, proteomics and other advanced approaches. On the other hand, relatively few in vivo studies have been conducted on anticancer effects of Huanglian and berberine. The clinical application of berberine or Huanglian as novel cancer therapeutic agents requires in vivo validations and further investigations of their anticancer mechanisms. © 2009 Elsevier Ireland Ltd. All rights reserved.published_or_final_versio

    Anticancer Activities of Meroterpenoids Isolated from the Brown Alga Cystoseira usneoides against the Human Colon Cancer Cells HT-29

    Get PDF
    Colorectal cancer (CRC) is one of the most common types of cancers and a leading cause of cancer death worldwide. The current treatment for CRC mainly involves surgery, radiotherapy, and chemotherapy. However, due to the side effects and the emergence of drug resistance, the search for new anticancer agents, pharmacologically safe and effective, is needed. In the present study, we have investigated the anticancer effects of eight algal meroterpenoids (AMTs, 1-8) isolated from the brown seaweed Cystoseira usneoides and their underlying mechanisms of action using HT-29, a highly metastatic human colon cancer cell line. All the tested meroterpenoids inhibited the growth of HT-29 malignant cells and were less toxic towards non-cancer colon cells, with the AMTs 1 and 5 exhibiting selectivity indexes of 5.26 and 5.23, respectively. Treatment of HT-29 cells with the AMTs 1, 2, 3, 4, 5, and 7 induced cell cycle arrest in G2/M phase and, in some instances, apoptosis (compounds 2, 3, and 5). Compounds 1-8 also exhibited significant inhibitory effects on the migration and/or invasion of colon cancer cells. Mechanistic analysis demonstrated that the AMTs 1, 2, 5, 6, 7, and 8 reduced phosphorylation levels of extracellular signal-regulated kinase (ERK) and the AMTs 2, 3, 4, 5, 7, and 8 decreased phosphorylation of c-JUN N-terminal kinase (JNK). Moreover, the AMTs 1, 2, 3, 4, 7, and 8 inhibited phosphorylation levels of protein kinase B (AKT) in colon carcinoma cells. These results provide new insights into the mechanisms and functions of the meroterpenoids of C. usneoides, which exhibit an anticancer effect on HT-29 colon cancer cells by inducing cell cycle arrest and apoptosis via the downregulation of ERK/JNK/AKT signaling pathways

    A novel mechanism of action of HER2 targeted immunotherapy is explained by inhibition of NRF2 function in ovarian cancer cells

    Get PDF
    Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target

    The contribution of age structure to cell population responses to targeted therapeutics

    Get PDF
    Cells grown in culture act as a model system for analyzing the effects of anticancer compounds, which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization techniques have been generally employed to minimize the variation in cell cycle position. However, synchronization techniques are cumbersome and imprecise and the agents used to synchronize the cells potentially have other unknown effects on the cells. An alternative approach is to determine the age structure in the population and account for the cell cycle positional effects post hoc. Here we provide a formalism to use quantifiable age distributions from live cell microscopy experiments to parameterize an age-structured model of cell population response

    Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates

    Get PDF
    We present the anticancer properties of cis, cis, trans-[Pt(IV)(NH3)2Cl2(OA)2] [Pt(IV)diOA] (OA = octanoato), Pt(IV) derivative of cisplatin containing two OA units appended to the axial positions of a six-coordinate Pt(IV) center. Our results demonstrate that Pt(IV)diOA is a potent cytotoxic agent against many cancer cell lines (the IC50 values are approximately two orders of magnitude lower than those of clinically used cisplatin or Pt(IV) derivatives with biologically inactive axial ligands). Importantly, Pt(IV)diOA overcomes resistance to cisplatin, is significantly more potent than its branched Pt(IV) valproato isomer and exhibits promising in vivo antitumor activity. The potency of Pt(IV)diOA is a consequence of several factors including enhanced cellular accumulation correlating with enhanced DNA platination and cytotoxicity. Pt(IV)diOA induces DNA hypermethylation and reduces mitochondrial membrane potential in cancer cells at levels markedly lower than the IC50 value of free OA suggesting the synergistic action of platinum and OA moieties. Collectively, the remarkable antitumor effects of Pt(IV)diOA are a consequence of the enhanced cellular uptake which makes it possible to simultaneously accumulate high levels of both cisplatin and OA in cells. The simultaneous dual action of cisplatin and OA by different mechanisms in tumor cells may result in a markedly enhanced and unique antitumor effects of Pt(IV) prodrugs
    corecore