114,836 research outputs found
Spacecraft attitude sensor
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners
Research to develop and define concepts for reliable control sensors - The solid state rate sensors Final report
Solid state device for sensing angular rate by detecting presence of coriolis force
(k,q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior
Advanced diffusion magnetic resonance imaging (dMRI) techniques, like
diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging
(HARDI), remain underutilized compared to diffusion tensor imaging because the
scan times needed to produce accurate estimations of fiber orientation are
significantly longer. To accelerate DSI and HARDI, recent methods from
compressed sensing (CS) exploit a sparse underlying representation of the data
in the spatial and angular domains to undersample in the respective k- and
q-spaces. State-of-the-art frameworks, however, impose sparsity in the spatial
and angular domains separately and involve the sum of the corresponding sparse
regularizers. In contrast, we propose a unified (k,q)-CS formulation which
imposes sparsity jointly in the spatial-angular domain to further increase
sparsity of dMRI signals and reduce the required subsampling rate. To
efficiently solve this large-scale global reconstruction problem, we introduce
a novel adaptation of the FISTA algorithm that exploits dictionary
separability. We show on phantom and real HARDI data that our approach achieves
significantly more accurate signal reconstructions than the state of the art
while sampling only 2-4% of the (k,q)-space, allowing for the potential of new
levels of dMRI acceleration.Comment: To be published in the 2017 Computational Diffusion MRI Workshop of
MICCA
Angular rate sensing by circulatory vortex flow: design, simulation and experiment
A fully packaged convective vortex gyrometer actuated by a PZT diaphragm is reported. The flow circulates at higher velocity after each actuating circle to form a vortex in the desired chamber. The vortex is characterized by hotwire anemometry. The device is initially designed based on a numerical analysis whose results are used to set up the experiment. The angular rate sensing of the device is successfully tested using a turntable. The technique is a potential solution to various applications related to inertial sensing and fluidic amplifier
Attitude control system
An attitude control system is described in which angular rate signals are generated by rate gyros mounted closely adjacent to gimbaled engines at the rear of a vehicle. Error signals representative of a commanded change in vehicle angle or attitude are obtained from a precision inertial platform located in the nose region of the vehicle. The rate gyro derived signals dominate at high frequencies where dynamic effects become significant, and platform signals dominate at low frequencies where precision signals are required for a steady vehicle attitude. The blended signals are applied in a conventional manner to control the gimbaling of vehicle engines about control axes
Digital servo controller
A system, for generating a signal to control the rotation of a shaft supporting an antenna so that the antenna is rotated the shortest angular distance from a present angular position to a new desired angular position, was described. The system comprises a shaft encoder which generates a digital encoder signal indicating the present position of the shaft. A command signal is compared with the encoder signal to produce an analog signal for rotating the antenna. An error signal is produced for controlling the direction of rotation of the antenna
Linear Block Coding for Efficient Beam Discovery in Millimeter Wave Communication Networks
The surge in mobile broadband data demands is expected to surpass the
available spectrum capacity below 6 GHz. This expectation has prompted the
exploration of millimeter wave (mm-wave) frequency bands as a candidate
technology for next generation wireless networks. However, numerous challenges
to deploying mm-wave communication systems, including channel estimation, need
to be met before practical deployments are possible. This work addresses the
mm-wave channel estimation problem and treats it as a beam discovery problem in
which locating beams with strong path reflectors is analogous to locating
errors in linear block codes. We show that a significantly small number of
measurements (compared to the original dimensions of the channel matrix) is
sufficient to reliably estimate the channel. We also show that this can be
achieved using a simple and energy-efficient transceiver architecture.Comment: To appear in the proceedings of IEEE INFOCOM '1
Fluidic angular velocity sensor
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller
Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors
The application of higher-order Laguerre Gauss (LG) modes in large-scale
gravitational wave detectors has recently been proposed. In comparison to the
fundamental mode, some higher-order Laguerre Gauss modes can significantly
reduce the contribution of coating Brownian noise. Using frequency domain
simulations we give a detailed analysis of the longitudinal and angular control
signals derived with a LG33 mode in comparison to the fundamental TEM00 mode.
The performance regarding interferometric sensing and control of the LG33 mode
is found to be similar, if not even better in all aspects of interest. In
addition, we evaluate the sensitivity gain of the implementation of LG33 modes
into the Advanced Virgo instrument. Our analysis shows that the application of
the LG33 mode results in a broadband improvement of the Advanced Virgo
sensitivity, increasing the potential detection rate of binary neutron star
inspirals by a factor 2.1.Comment: 12 pages, 8 figure
- …
