350,181 research outputs found

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure

    Android Malware Clustering through Malicious Payload Mining

    Full text link
    Clustering has been well studied for desktop malware analysis as an effective triage method. Conventional similarity-based clustering techniques, however, cannot be immediately applied to Android malware analysis due to the excessive use of third-party libraries in Android application development and the widespread use of repackaging in malware development. We design and implement an Android malware clustering system through iterative mining of malicious payload and checking whether malware samples share the same version of malicious payload. Our system utilizes a hierarchical clustering technique and an efficient bit-vector format to represent Android apps. Experimental results demonstrate that our clustering approach achieves precision of 0.90 and recall of 0.75 for Android Genome malware dataset, and average precision of 0.98 and recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017

    Generating Predicate Callback Summaries for the Android Framework

    Full text link
    One of the challenges of analyzing, testing and debugging Android apps is that the potential execution orders of callbacks are missing from the apps' source code. However, bugs, vulnerabilities and refactoring transformations have been found to be related to callback sequences. Existing work on control flow analysis of Android apps have mainly focused on analyzing GUI events. GUI events, although being a key part of determining control flow of Android apps, do not offer a complete picture. Our observation is that orthogonal to GUI events, the Android API calls also play an important role in determining the order of callbacks. In the past, such control flow information has been modeled manually. This paper presents a complementary solution of constructing program paths for Android apps. We proposed a specification technique, called Predicate Callback Summary (PCS), that represents the callback control flow information (including callback sequences as well as the conditions under which the callbacks are invoked) in Android API methods and developed static analysis techniques to automatically compute and apply such summaries to construct apps' callback sequences. Our experiments show that by applying PCSs, we are able to construct Android apps' control flow graphs, including inter-callback relations, and also to detect infeasible paths involving multiple callbacks. Such control flow information can help program analysis and testing tools to report more precise results. Our detailed experimental data is available at: http://goo.gl/NBPrKsComment: 11 page
    corecore