1,531,102 research outputs found
Timed Analysis of Security Protocols
We propose a method for engineering security protocols that are aware of
timing aspects. We study a simplified version of the well-known Needham
Schroeder protocol and the complete Yahalom protocol, where timing information
allows the study of different attack scenarios. We model check the protocols
using UPPAAL. Further, a taxonomy is obtained by studying and categorising
protocols from the well known Clark Jacob library and the Security Protocol
Open Repository (SPORE) library. Finally, we present some new challenges and
threats that arise when considering time in the analysis, by providing a novel
protocol that uses time challenges and exposing a timing attack over an
implementation of an existing security protocol
Formal Analysis of V2X Revocation Protocols
Research on vehicular networking (V2X) security has produced a range of
security mechanisms and protocols tailored for this domain, addressing both
security and privacy. Typically, the security analysis of these proposals has
largely been informal. However, formal analysis can be used to expose flaws and
ultimately provide a higher level of assurance in the protocols.
This paper focusses on the formal analysis of a particular element of
security mechanisms for V2X found in many proposals: the revocation of
malicious or misbehaving vehicles from the V2X system by invalidating their
credentials. This revocation needs to be performed in an unlinkable way for
vehicle privacy even in the context of vehicles regularly changing their
pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and
RTOKEN aim to solve this challenge by means of cryptographic solutions and
trusted hardware.
Formal analysis using the TAMARIN prover identifies two flaws with some of
the functional correctness and authentication properties in these schemes. We
then propose Obscure Token (OTOKEN), an extension of REWIRE to enable
revocation in a privacy preserving manner. Our approach addresses the
functional and authentication properties by introducing an additional key-pair,
which offers a stronger and verifiable guarantee of successful revocation of
vehicles without resolving the long-term identity. Moreover OTOKEN is the first
V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure
Verifying security protocols by knowledge analysis
This paper describes a new interactive method to analyse knowledge of participants involved in security protocols and further to verify the correctness of the protocols. The method can detect attacks and flaws involving interleaving sessions besides normal attacks. The implementation of the method in a generic theorem proving environment, namely Isabelle, makes the verification of protocols mechanical and efficient; it can verify a medium-sized security protocol in less than ten seconds. As an example, the paper finds the flaw in the Needham-Schroeder public key authentication protocol and proves the secure properties and guarantees of the protocol with Lowe's fix to show the effectiveness of this method
Knowledge Flow Analysis for Security Protocols
Knowledge flow analysis offers a simple and flexible way to find flaws in
security protocols. A protocol is described by a collection of rules
constraining the propagation of knowledge amongst principals. Because this
characterization corresponds closely to informal descriptions of protocols, it
allows a succinct and natural formalization; because it abstracts away message
ordering, and handles communications between principals and applications of
cryptographic primitives uniformly, it is readily represented in a standard
logic. A generic framework in the Alloy modelling language is presented, and
instantiated for two standard protocols, and a new key management scheme.Comment: 20 page
Automatic analysis of distance bounding protocols
Distance bounding protocols are used by nodes in wireless networks to
calculate upper bounds on their distances to other nodes. However, dishonest
nodes in the network can turn the calculations both illegitimate and inaccurate
when they participate in protocol executions. It is important to analyze
protocols for the possibility of such violations. Past efforts to analyze
distance bounding protocols have only been manual. However, automated
approaches are important since they are quite likely to find flaws that manual
approaches cannot, as witnessed in literature for analysis pertaining to key
establishment protocols. In this paper, we use the constraint solver tool to
automatically analyze distance bounding protocols. We first formulate a new
trace property called Secure Distance Bounding (SDB) that protocol executions
must satisfy. We then classify the scenarios in which these protocols can
operate considering the (dis)honesty of nodes and location of the attacker in
the network. Finally, we extend the constraint solver so that it can be used to
test protocols for violations of SDB in these scenarios and illustrate our
technique on some published protocols.Comment: 22 pages, Appeared in Foundations of Computer Security, (Affiliated
workshop of LICS 2009, Los Angeles, CA)
Formal analysis techniques for gossiping protocols
We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them
Design and analysis of group key exchange protocols
A group key exchange (GKE) protocol allows a set of parties to agree upon a common secret session key over a public network. In this thesis, we focus on designing efficient GKE protocols using public key techniques and appropriately revising security models for GKE protocols. For the purpose of modelling and analysing the security of GKE protocols we apply the widely accepted computational complexity approach. The contributions of the thesis to the area of GKE protocols are manifold. We propose the first GKE protocol that requires only one round of communication and is proven secure in the standard model. Our protocol is generically constructed from a key encapsulation mechanism (KEM). We also suggest an efficient KEM from the literature, which satisfies the underlying security notion, to instantiate the generic protocol. We then concentrate on enhancing the security of one-round GKE protocols. A new model of security for forward secure GKE protocols is introduced and a generic one-round GKE protocol with forward security is then presented. The security of this protocol is also proven in the standard model. We also propose an efficient forward secure encryption scheme that can be used to instantiate the generic GKE protocol. Our next contributions are to the security models of GKE protocols. We observe that the analysis of GKE protocols has not been as extensive as that of two-party key exchange protocols. Particularly, the security attribute of key compromise impersonation (KCI) resilience has so far been ignored for GKE protocols. We model the security of GKE protocols addressing KCI attacks by both outsider and insider adversaries. We then show that a few existing protocols are not secure against KCI attacks. A new proof of security for an existing GKE protocol is given under the revised model assuming random oracles. Subsequently, we treat the security of GKE protocols in the universal composability (UC) framework. We present a new UC ideal functionality for GKE protocols capturing the security attribute of contributiveness. An existing protocol with minor revisions is then shown to realize our functionality in the random oracle model. Finally, we explore the possibility of constructing GKE protocols in the attribute-based setting. We introduce the concept of attribute-based group key exchange (AB-GKE). A security model for AB-GKE and a one-round AB-GKE protocol satisfying our security notion are presented. The protocol is generically constructed from a new cryptographic primitive called encapsulation policy attribute-based KEM (EP-AB-KEM), which we introduce in this thesis. We also present a new EP-AB-KEM with a proof of security assuming generic groups and random oracles. The EP-AB-KEM can be used to instantiate our generic AB-GKE protocol
- …
