21,492 research outputs found
Quantum Information Complexity and Amortized Communication
We define a new notion of information cost for quantum protocols, and a
corresponding notion of quantum information complexity for bipartite quantum
channels, and then investigate the properties of such quantities. These are the
fully quantum generalizations of the analogous quantities for bipartite
classical functions that have found many applications recently, in particular
for proving communication complexity lower bounds. Our definition is strongly
tied to the quantum state redistribution task.
Previous attempts have been made to define such a quantity for quantum
protocols, with particular applications in mind; our notion differs from these
in many respects. First, it directly provides a lower bound on the quantum
communication cost, independent of the number of rounds of the underlying
protocol. Secondly, we provide an operational interpretation for quantum
information complexity: we show that it is exactly equal to the amortized
quantum communication complexity of a bipartite channel on a given state. This
generalizes a result of Braverman and Rao to quantum protocols, and even
strengthens the classical result in a bounded round scenario. Also, this
provides an analogue of the Schumacher source compression theorem for
interactive quantum protocols, and answers a question raised by Braverman.
We also discuss some potential applications to quantum communication
complexity lower bounds by specializing our definition for classical functions
and inputs. Building on work of Jain, Radhakrishnan and Sen, we provide new
evidence suggesting that the bounded round quantum communication complexity of
the disjointness function is \Omega (n/M + M), for M-message protocols. This
would match the best known upper bound.Comment: v1, 38 pages, 1 figur
Long-Lived Counters with Polylogarithmic Amortized Step Complexity
A shared-memory counter is a well-studied and widely-used concurrent object. It supports two operations: An Inc operation that increases its value by 1 and a Read operation that returns its current value. Jayanti, Tan and Toueg [Jayanti et al., 2000] proved a linear lower bound on the worst-case step complexity of obstruction-free implementations, from read and write operations, of a large class of shared objects that includes counters. The lower bound leaves open the question of finding counter implementations with sub-linear amortized step complexity.
In this paper, we address this gap. We present the first wait-free n-process counter, implemented using only read and write operations, whose amortized operation step complexity is O(log^2 n) in all executions. This is the first non-blocking read/write counter algorithm that provides sub-linear amortized step complexity in executions of arbitrary length. Since a logarithmic lower bound on the amortized step complexity of obstruction-free counter implementations exists, our upper bound is optimal up to a logarithmic factor
A Hypergraph Dictatorship Test with Perfect Completeness
A hypergraph dictatorship test is first introduced by Samorodnitsky and
Trevisan and serves as a key component in their unique games based \PCP
construction. Such a test has oracle access to a collection of functions and
determines whether all the functions are the same dictatorship, or all their
low degree influences are Their test makes queries and has
amortized query complexity but has an inherent loss of
perfect completeness. In this paper we give an adaptive hypergraph dictatorship
test that achieves both perfect completeness and amortized query complexity
.Comment: Some minor correction
- …
