21,492 research outputs found

    Quantum Information Complexity and Amortized Communication

    Full text link
    We define a new notion of information cost for quantum protocols, and a corresponding notion of quantum information complexity for bipartite quantum channels, and then investigate the properties of such quantities. These are the fully quantum generalizations of the analogous quantities for bipartite classical functions that have found many applications recently, in particular for proving communication complexity lower bounds. Our definition is strongly tied to the quantum state redistribution task. Previous attempts have been made to define such a quantity for quantum protocols, with particular applications in mind; our notion differs from these in many respects. First, it directly provides a lower bound on the quantum communication cost, independent of the number of rounds of the underlying protocol. Secondly, we provide an operational interpretation for quantum information complexity: we show that it is exactly equal to the amortized quantum communication complexity of a bipartite channel on a given state. This generalizes a result of Braverman and Rao to quantum protocols, and even strengthens the classical result in a bounded round scenario. Also, this provides an analogue of the Schumacher source compression theorem for interactive quantum protocols, and answers a question raised by Braverman. We also discuss some potential applications to quantum communication complexity lower bounds by specializing our definition for classical functions and inputs. Building on work of Jain, Radhakrishnan and Sen, we provide new evidence suggesting that the bounded round quantum communication complexity of the disjointness function is \Omega (n/M + M), for M-message protocols. This would match the best known upper bound.Comment: v1, 38 pages, 1 figur

    Long-Lived Counters with Polylogarithmic Amortized Step Complexity

    Get PDF
    A shared-memory counter is a well-studied and widely-used concurrent object. It supports two operations: An Inc operation that increases its value by 1 and a Read operation that returns its current value. Jayanti, Tan and Toueg [Jayanti et al., 2000] proved a linear lower bound on the worst-case step complexity of obstruction-free implementations, from read and write operations, of a large class of shared objects that includes counters. The lower bound leaves open the question of finding counter implementations with sub-linear amortized step complexity. In this paper, we address this gap. We present the first wait-free n-process counter, implemented using only read and write operations, whose amortized operation step complexity is O(log^2 n) in all executions. This is the first non-blocking read/write counter algorithm that provides sub-linear amortized step complexity in executions of arbitrary length. Since a logarithmic lower bound on the amortized step complexity of obstruction-free counter implementations exists, our upper bound is optimal up to a logarithmic factor

    A Hypergraph Dictatorship Test with Perfect Completeness

    Full text link
    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based \PCP construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1).o(1). Their test makes q3q\geq3 queries and has amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}) but has an inherent loss of perfect completeness. In this paper we give an adaptive hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}).Comment: Some minor correction
    corecore