21,187 research outputs found
Beauville surfaces, moduli spaces and finite groups
In this paper we give the asymptotic growth of the number of connected
components of the moduli space of surfaces of general type corresponding to
certain families of Beauville surfaces with group either \PSL(2,p), or an
alternating group, or a symmetric group or an abelian group. We moreover extend
these results to regular surfaces isogenous to a higher product of curves.Comment: 27 pages. The article arXiv 0910.5402v2 was divided into two parts.
This is the second half of the original paper, and it contains the
subsections concerning the moduli spac
Alternating groups and moduli space lifting Invariants
Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of
degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves
Fried-Serre on deciding when sphere covers with odd-order branching lift to
unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on
Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces
of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp.
odd) theta functions when r is even (resp. odd). For inner spaces the result is
independent of r. Another use appears in,
http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of
families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for
the prime p=2 lying over Hurwitz spaces first studied by,
http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and
Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*)
High tower levels are general-type varieties and have no rational points.For
infinitely many of those MTs, the tree of cusps contains a subtree -- a spire
-- isomorphic to the tree of cusps on a modular curve tower. This makes
plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs.
Establishing these modular curve-like properties opens, to MTs, modular
curve-like thinking where modular curves have never gone before. A fuller html
description of this paper is at
http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from
proof sheets, but does include some proof simplification in \S
Geometry of tropical moduli spaces and linkage of graphs
We prove the following "linkage" theorem: two p-regular graphs of the same
genus can be obtained from one another by a finite alternating sequence of
one-edge-contractions; moreover this preserves 3-edge-connectivity. We use the
linkage theorem to prove that various moduli spaces of tropical curves are
connected through codimension one.Comment: Final version incorporating the referees correction
Counting BPS Operators in the Chiral Ring of N=2 Supersymmetric Gauge Theories or N=2 Braine Surgery
This note is presenting the generating functions which count the BPS
operators in the chiral ring of a N=2 quiver gauge theory that lives on N D3
branes probing an ALE singularity. The difficulty in this computation arises
from the fact that this quiver gauge theory has a moduli space of vacua that
splits into many branches -- the Higgs, the Coulomb and mixed branches. As a
result there can be operators which explore those different branches and the
counting gets complicated by having to deal with such operators while avoiding
over or under counting. The solution to this problem turns out to be very
elegant and is presented in this note. Some surprises with "surgery" of
generating functions arises.Comment: 24 pages LaTe
Cluster varieties from Legendrian knots
Many interesting spaces --- including all positroid strata and wild character
varieties --- are moduli of constructible sheaves on a surface with
microsupport in a Legendrian link. We show that the existence of cluster
structures on these spaces may be deduced in a uniform, systematic fashion by
constructing and taking the sheaf quantizations of a set of exact Lagrangian
fillings in correspondence with isotopy representatives whose front projections
have crossings with alternating orientations. It follows in turn that results
in cluster algebra may be used to construct and distinguish exact Lagrangian
fillings of Legendrian links in the standard contact three space.Comment: 47 page
The surgery exact triangle in Pin(2)-monopole Floer homology
We prove the existence of an exact triangle for the Pin(2)-monopole Floer
homology groups of three manifolds related by specific Dehn surgeries on a
given knot. Unlike the counterpart in usual monopole Floer homology, only two
of the three maps are those induced by the corresponding elementary cobordism.
We use this triangle to describe the invariants associated to homology spheres
obtained by (\pm1)-surgery on alternating knots.Comment: 37 pages, 4 figures. A few gaps were corrected, exposition slightly
changed. Comments are welcom
- …
