8,276 research outputs found

    Bregman Alternating Direction Method of Multipliers

    Full text link
    The mirror descent algorithm (MDA) generalizes gradient descent by using a Bregman divergence to replace squared Euclidean distance. In this paper, we similarly generalize the alternating direction method of multipliers (ADMM) to Bregman ADMM (BADMM), which allows the choice of different Bregman divergences to exploit the structure of problems. BADMM provides a unified framework for ADMM and its variants, including generalized ADMM, inexact ADMM and Bethe ADMM. We establish the global convergence and the O(1/T)O(1/T) iteration complexity for BADMM. In some cases, BADMM can be faster than ADMM by a factor of O(n/log(n))O(n/\log(n)). In solving the linear program of mass transportation problem, BADMM leads to massive parallelism and can easily run on GPU. BADMM is several times faster than highly optimized commercial software Gurobi

    Scalable Stochastic Alternating Direction Method of Multipliers

    Full text link
    Stochastic alternating direction method of multipliers (ADMM), which visits only one sample or a mini-batch of samples each time, has recently been proved to achieve better performance than batch ADMM. However, most stochastic methods can only achieve a convergence rate O(1/T)O(1/\sqrt T) on general convex problems,where T is the number of iterations. Hence, these methods are not scalable with respect to convergence rate (computation cost). There exists only one stochastic method, called SA-ADMM, which can achieve convergence rate O(1/T)O(1/T) on general convex problems. However, an extra memory is needed for SA-ADMM to store the historic gradients on all samples, and thus it is not scalable with respect to storage cost. In this paper, we propose a novel method, called scalable stochastic ADMM(SCAS-ADMM), for large-scale optimization and learning problems. Without the need to store the historic gradients, SCAS-ADMM can achieve the same convergence rate O(1/T)O(1/T) as the best stochastic method SA-ADMM and batch ADMM on general convex problems. Experiments on graph-guided fused lasso show that SCAS-ADMM can achieve state-of-the-art performance in real application

    Adaptive Stochastic Alternating Direction Method of Multipliers

    Full text link
    The Alternating Direction Method of Multipliers (ADMM) has been studied for years. The traditional ADMM algorithm needs to compute, at each iteration, an (empirical) expected loss function on all training examples, resulting in a computational complexity proportional to the number of training examples. To reduce the time complexity, stochastic ADMM algorithms were proposed to replace the expected function with a random loss function associated with one uniformly drawn example plus a Bregman divergence. The Bregman divergence, however, is derived from a simple second order proximal function, the half squared norm, which could be a suboptimal choice. In this paper, we present a new family of stochastic ADMM algorithms with optimal second order proximal functions, which produce a new family of adaptive subgradient methods. We theoretically prove that their regret bounds are as good as the bounds which could be achieved by the best proximal function that can be chosen in hindsight. Encouraging empirical results on a variety of real-world datasets confirm the effectiveness and efficiency of the proposed algorithms.Comment: 13 page

    Fast Stochastic Alternating Direction Method of Multipliers

    Full text link
    In this paper, we propose a new stochastic alternating direction method of multipliers (ADMM) algorithm, which incrementally approximates the full gradient in the linearized ADMM formulation. Besides having a low per-iteration complexity as existing stochastic ADMM algorithms, the proposed algorithm improves the convergence rate on convex problems from O(1T)O(\frac 1 {\sqrt{T}}) to O(1T)O(\frac 1 T), where TT is the number of iterations. This matches the convergence rate of the batch ADMM algorithm, but without the need to visit all the samples in each iteration. Experiments on the graph-guided fused lasso demonstrate that the new algorithm is significantly faster than state-of-the-art stochastic and batch ADMM algorithms

    An inertial alternating direction method of multipliers

    Full text link
    In the context of convex optimization problems in Hilbert spaces, we induce inertial effects into the classical ADMM numerical scheme and obtain in this way so-called inertial ADMM algorithms, the convergence properties of which we investigate into detail. To this aim we make use of the inertial version of the Douglas-Rachford splitting method for monotone inclusion problems recently introduced in [12], in the context of concomitantly solving a convex minimization problem and its Fenchel dual. The convergence of both sequences of the generated iterates and of the objective function values is addressed. We also show how the obtained results can be extended to the treating of convex minimization problems having as objective a finite sum of convex functions

    An Accelerated Linearized Alternating Direction Method of Multipliers

    Full text link
    We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than that of linearized ADMM, in terms of their dependence on the Lipschitz constant of the smooth component. Moreover, AADMM is capable to deal with the situation when the feasible region is unbounded, as long as the corresponding saddle point problem has a solution. A backtracking algorithm is also proposed for practical performance

    Distributed Event Localization via Alternating Direction Method of Multipliers

    Full text link
    This paper addresses the problem of distributed event localization using noisy range measurements with respect to sensors with known positions. Event localization is fundamental in many wireless sensor network applications such as homeland security, law enforcement, and environmental studies. However, most existing distributed algorithms require the target event to be within the convex hull of the deployed sensors. Based on the alternating direction method of multipliers (ADMM), we propose two scalable distributed algorithms named GS-ADMM and J-ADMM which do not require the target event to be within the convex hull of the deployed sensors. More specifically, the two algorithms can be implemented in a scenario in which the entire sensor network is divided into several clusters with cluster heads collecting measurements within each cluster and exchanging intermediate computation information to achieve localization consistency (consensus) across all clusters. This scenario is important in many applications such as homeland security and law enforcement. Simulation results confirm effectiveness of the proposed algorithms.Comment: accepted to IEEE Transactions on Mobile Computin

    Alternating Direction Method of Multipliers for Linear Inverse Problems

    Full text link
    In this paper we propose an iterative method using alternating direction method of multipliers (ADMM) strategy to solve linear inverse problems in Hilbert spaces with general convex penalty term. When the data is given exactly, we give a convergence analysis of our ADMM algorithm without assuming the existence of Lagrange multiplier. In case the data contains noise, we show that our method is a regularization method as long as it is terminated by a suitable stopping rule. Various numerical simulations are performed to test the efficiency of the method

    Self Equivalence of the Alternating Direction Method of Multipliers

    Full text link
    The alternating direction method of multipliers (ADM or ADMM) breaks a complex optimization problem into much simpler subproblems. The ADM algorithms are typically short and easy to implement yet exhibit (nearly) state-of-the-art performance for large-scale optimization problems. To apply ADM, we first formulate a given problem into the "ADM-ready" form, so the final algorithm depends on the formulation. A problem like \mbox{minimize}_\mathbf{x} u(\mathbf{x}) + v(\mathbf{C}\mathbf{x}) has six different "ADM-ready" formulations. They can be in the primal or dual forms, and they differ by how dummy variables are introduced. To each "ADM-ready" formulation, ADM can be applied in two different orders depending on how the primal variables are updated. Finally, we get twelve different ADM algorithms! How do they compare to each other? Which algorithm should one choose? In this paper, we show that many of the different ways of applying ADM are equivalent. Specifically, we show that ADM applied to a primal formulation is equivalent to ADM applied to its Lagrange dual; ADM is equivalent to a primal-dual algorithm applied to the saddle-point formulation of the same problem. These results are surprising since the primal and dual variables in ADM are seemingly treated very differently, and some previous work exhibit preferences in one over the other on specific problems. In addition, when one of the two objective functions is quadratic, possibly subject to an affine constraint, we show that swapping the update order of the two primal variables in ADM gives the same algorithm. These results identify the few truly different ADM algorithms for a problem, which generally have different forms of subproblems from which it is easy to pick one with the most computationally friendly subproblems.Comment: 29 page

    DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    Full text link
    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.Comment: 13 page
    corecore