293,527 research outputs found

    Hexagonal High-Entropy Alloys

    Full text link
    We report on the discovery of a high-entropy alloy with a hexagonal crystal structure. Equiatomic samples in the alloy system Ho-Dy-Y-Gd-Tb were found to solidify as homogeneous single-phase high-entropy alloys. The results of our electron diffraction investigations and high-resolution scanning transmission electron microscopy are consistent with a Mg-type hexagonal structure. The possibility of hexagonal high-entropy alloys in other alloy systems is discussed.Comment: Changes upon replacement: inserted submission date of manuscript to journal. No other changes were mad

    Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    Get PDF
    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed

    Non-linear macroscopic polarization in III-V nitride alloys

    Full text link
    We study the dependence of macroscopic polarization on composition and strain in wurtzite III-V nitride ternary alloys using ab initio density-functional techniques. The spontaneous polarization is characterized by a large bowing, strongly dependent on the alloy microscopic structure. The bowing is due to the different response of the bulk binaries to hydrostatic pressure, and to internal strain effects (bond alternation). Disorder effects are instead minor. Deviations from parabolicity (simple bowing) are of order 10 % in the most extreme case of AlInN alloy, much less at all other compositions. Piezoelectric polarization is also strongly non-linear. At variance with the spontaneous component, this behavior is independent of microscopic alloy structure or disorder effects, and due entirely to the non-linear strain dependence of the bulk piezoelectric response. It is thus possible to predict the piezoelectric polarization for any alloy composition using the piezoelectricity of the parent binaries.Comment: RevTex 7 pages, 7 postscript figures embedde

    Bonding titanium to Rene 41 alloy

    Get PDF
    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor

    Characterization of half-metallic L2_1-phase Co_2FeSi full-Heusler alloy films formed by rapid thermal annealing

    Full text link
    The authors developed a preparation technique of Co_2FeSi full-Heusler alloy films with the L2_1-ordered structure on silicon-on-insulator (SOI) substrates, employing rapid thermal annealing (RTA). The Co_2FeSi full-Heusler alloy films were successfully formed by RTA-induced silicidation reaction between an ultrathin SOI (001) layer and Fe/Co layers deposited on it. The highly (110)-oriented L2_1-phase polycrystalline full-Heusler alloy films were obtained at the RTA temperature of 700 C. Crystallographic and magnetic properties of the RTA-formed full-Heusler alloy films were qualitatively the same as those of bulk full-Heusler alloy. This technique is compatible with metal source/drain formation process in advanced CMOS technology and would be applicable to the fabrication of the half-metallic source/drain of MOSFET type of spin transistors.Comment: 18 pages, 5 figure

    Bandgap narrowing in Mn doped GaAs probed by room-temperature photoluminescence

    Full text link
    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here we present room temperature photoluminescence and ellipsometry measurements of Ga_{100%-x}Mn_{x}As alloy. The up-shift of the valence-band is proven by the red shift of the room temperature near band gap emission from the Ga_{100%-x}Mn_{x}As alloy with increasing Mn content. It is shown that even a doping by 0.02 at.% of Mn affects the valence-band edge and it merges with the impurity band for a Mn concentration as low as 0.6 at.%. Both X-ray diffraction pattern and high resolution cross-sectional TEM images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.Comment: 24 pages, 7 figures, accepted at Phys. Rev. B 201
    corecore