22,421 research outputs found

    Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects.

    Get PDF
    Activation of nicotinic acetylcholine receptors (nAChRs) is associated with the binding of agonists such as acetylcholine to an extracellular site that is located at the interface between two adjacent receptor subunits. More recently, there has been considerable interest in compounds, such as positive and negative allosteric modulators (PAMs and NAMs), that are able to modulate nAChR function by binding to distinct allosteric sites. Here we examined a series of compounds differing only in methyl substitution of a single aromatic ring. This series of compounds includes a previously described α7-selective allosteric agonist, cis-cis-4-p-tolyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4MP-TQS), together with all other possible combinations of methyl substitution at a phenyl ring (18 additional compounds). Studies conducted with this series of compounds have revealed five distinct pharmacological effects on α7 nAChRs. These five effects can be summarized as: 1) nondesensitizing activation (allosteric agonists), 2) potentiation associated with minimal effects on receptor desensitization (type I PAMs), 3) potentiation associated with reduced desensitization (type II PAMs), 4) noncompetitive antagonism (NAMs), and 5) compounds that have no effect on orthosteric agonist responses but block allosteric modulation (silent allosteric modulators (SAMs)). Several lines of experimental evidence are consistent with all of these compounds acting at a common, transmembrane allosteric site. Notably, all of these chemically similar compounds that have been classified as nondesensitizing allosteric agonists or as nondesensitizing (type II) PAMs are cis-cis-diastereoisomers, whereas all of the NAMs, SAMs, and type I PAMs are cis-trans-diastereoisomers. Our data illustrate the remarkable pharmacological diversity of allosteric modulators acting on nAChRs

    Supporting the identification of novel fragment-based positive allosteric modulators using a supervised molecular dynamics approach: A retrospective analysis considering the human A2A adenosine receptor as a key example

    Get PDF
    Structure-driven fragment-based (SDFB) approaches have provided efficient methods for the identification of novel drug candidates. This strategy has been largely applied in discovering several pharmacological ligand classes, including enzyme inhibitors, receptor antagonists and, more recently, also allosteric (positive and negative) modulators. Recently, Siegal and collaborators reported an interesting study, performed on a detergent-solubilized StaR adenosine A2A receptor, describing the existence of both fragment-like negative allosteric modulators (NAMs), and fragment-like positive allosteric modulators (PAMs). From this retrospective study, our results suggest that Supervised Molecular Dynamics (SuMD) simulations can support, on a reasonable time scale, the identification of fragment-like PAMs following their receptor recognition pathways and characterizing the possible allosteric binding sites

    Chimeric glutamate receptor subunits reveal the transmembrane domain is sufficient for NMDA receptor pore properties but some positive allosteric modulators require additional domains

    Get PDF
    NMDA receptors are ligand-gated ion channels that underlie transmission at excitatory synapses and play an important role in regulating synaptic strength and stability. Functional NMDA receptors require two copies of the GluN1 subunit coassembled with GluN2 (and/or GluN3) subunits into a heteromeric tetramer. A diverse array of allosteric modulators can upregulate or downregulate NMDA receptor activity. These modulators include both synthetic compounds and endogenous modulators, such as cis-unsaturated fatty acids, 24(S)-hydroxycholesterol, and various neurosteroids. To evaluate the structural requirements for the formation and allosteric modulation of NMDA receptor pores, we have replaced portions of the rat GluN1, GluN2A, and GluN2B subunits with homologous segments from the rat GluK2 kainate receptor subunit. Our results with these chimeric constructs show that the NMDA receptor transmembrane domain is sufficient to account for most pore properties, but that regulation by some allosteric modulators requires additional cytoplasmic or extracellular domains. SIGNIFICANCE STATEMENT Glutamate receptors mediate excitatory synaptic transmission by forming cation channels through the membrane that open upon glutamate binding. Although many compounds have been identified that regulate glutamate receptor activity, in most cases the detailed mechanisms that underlie modulation are poorly understood. To identify what parts of the receptor are essential for pore formation and sensitivity to allosteric modulators, we generated chimeric subunits that combined segments from NMDA and kainate receptors, subtypes with distinct pharmacological profiles. Surprisingly, our results identify separate domain requirements for allosteric potentiation of NMDA receptor pores by pregnenolone sulfate, 24(S)-hydroxycholesterol, and docosahexaenoic acid, three endogenous modulators derived from membrane constituents. Understanding where and how these compounds act on NMDA receptors should aid in designing better therapeutic agents

    The calcium-sensing receptor as a regulator of cellular fate in normal and pathological conditions

    Get PDF
    The calcium-sensing receptor (CaSR) belongs to the evolutionarily conserved family of plasma membrane G protein-coupled receptors (GPCRs). Early studies identified an essential role for the CaSR in systemic calcium homeostasis through its ability to sense small changes in circulating calcium concentration and to couple this information to intracellular signaling pathways that influence parathyroid hormone secretion. However, the presence of CaSR protein in tissues is not directly involved in regulating mineral ion homeostasis points to a role for the CaSR in other cellular functions including the control of cellular proliferation, differentiation and apoptosis. This position at the crossroads of cellular fate designates the CaSR as an interesting study subject is likely to be involved in a variety of previously unconsidered human pathologies, including cancer, atherosclerosis and Alzheimer's disease. Here, we will review the recent discoveries regarding the relevance of CaSR signaling in development and disease. Furthermore, we will discuss the rational for developing and using CaSR-based therapeutics

    The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    Get PDF
    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many theoretical advantages over their orthosteric counterparts, including more complex modes of action, improved safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge of identifying allosteric leads and their often flat or confusing SAR. The present review will consider the advantages and challenges associated with allosteric GPCR ligands, and examine how the particular properties of these ligands may be exploited to uncover the therapeutic potential for free fatty acid sensitive GPCRs

    Positive allosteric modulators of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor

    Get PDF
    L-glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and plays a fundamental role in the control of motor function, cognition and mood. The physiological effects of glutamate are mediated through two functionally distinct receptor families. While activation of metabotropic (G-protein coupled) glutamate receptors results in modulation of neuronal excitability and transmission, the ionotropic glutamate receptors (ligand-gated ion channels) are responsible for mediating the fast synaptic response to extracellular glutamate

    Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators

    Get PDF
    This Letter was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Scottish Universities Life Sciences Alliance (SULSA) in 2011Peer reviewedPostprin

    Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes

    Get PDF
    The realisation of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (M1 mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702, described previously as a potent M1 receptor allosteric agonist, which showed pro-cognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side-effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702 together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. We conclude that these properties, whilst imparting beneficial effects on learning and memory, are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data supports the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses

    Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)

    Get PDF
    ACKNOWLEDGMENTS The work was supported by National Institutes of Health grants DA027113 and EY024717 to G.A.T. and DA09158 to A.M. A portion of this work was submitted in 2011 by A. Kulkarni in partial fulfillment of M.S. degree requirements from Northeastern University, Boston, MA.Peer reviewe
    corecore