20,315 research outputs found
Positive allosteric modulators of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor
L-glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and plays a fundamental role in the control of motor function, cognition and mood. The physiological effects of glutamate are mediated through two functionally distinct receptor families. While activation of metabotropic (G-protein coupled) glutamate receptors results in modulation of neuronal excitability and transmission, the ionotropic glutamate receptors (ligand-gated ion channels) are responsible for mediating the fast synaptic response to extracellular glutamate
Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes
The realisation of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (M1 mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702, described previously as a potent M1 receptor allosteric agonist, which showed pro-cognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side-effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702 together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. We conclude that these properties, whilst imparting beneficial effects on learning and memory, are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data supports the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses
The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs
G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many theoretical advantages over their orthosteric counterparts, including more complex modes of action, improved safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge of identifying allosteric leads and their often flat or confusing SAR. The present review will consider the advantages and challenges associated with allosteric GPCR ligands, and examine how the particular properties of these ligands may be exploited to uncover the therapeutic potential for free fatty acid sensitive GPCRs
Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects.
Activation of nicotinic acetylcholine receptors (nAChRs) is associated with the binding of agonists such as acetylcholine to an extracellular site that is located at the interface between two adjacent receptor subunits. More recently, there has been considerable interest in compounds, such as positive and negative allosteric modulators (PAMs and NAMs), that are able to modulate nAChR function by binding to distinct allosteric sites. Here we examined a series of compounds differing only in methyl substitution of a single aromatic ring. This series of compounds includes a previously described α7-selective allosteric agonist, cis-cis-4-p-tolyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4MP-TQS), together with all other possible combinations of methyl substitution at a phenyl ring (18 additional compounds). Studies conducted with this series of compounds have revealed five distinct pharmacological effects on α7 nAChRs. These five effects can be summarized as: 1) nondesensitizing activation (allosteric agonists), 2) potentiation associated with minimal effects on receptor desensitization (type I PAMs), 3) potentiation associated with reduced desensitization (type II PAMs), 4) noncompetitive antagonism (NAMs), and 5) compounds that have no effect on orthosteric agonist responses but block allosteric modulation (silent allosteric modulators (SAMs)). Several lines of experimental evidence are consistent with all of these compounds acting at a common, transmembrane allosteric site. Notably, all of these chemically similar compounds that have been classified as nondesensitizing allosteric agonists or as nondesensitizing (type II) PAMs are cis-cis-diastereoisomers, whereas all of the NAMs, SAMs, and type I PAMs are cis-trans-diastereoisomers. Our data illustrate the remarkable pharmacological diversity of allosteric modulators acting on nAChRs
Heroin-piracetam mixture: suggested mechanisms of action and risks of misinterpretation for drug users
Piracetam is a positive allosteric modulator of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor that has been frequently used in the treatment of cognitive disorders. Press and internet reports indicate that the use of piracetam, as a heroin adulterant, has spread rapidly in some countries, especially in Asia and Europe. Its use, as adulterant, is believed to produce more profound desirable effects, while decreasing hangover. Recent surveys demonstrated that piracetam protects neurons from heroin-induced apoptosis. The protective role of this adulterating substance may be related to restoration of beta-endorphin levels and to its neuroprotective effects. The aim of this paper is to review the relevant literature and suggest the main hypothetical mechanisms that justify its use as a heroin adulterant, try to understand if its use could help people who want to come off heroin by reducing withdrawal symptoms and, finally, give useful information that permit us to understand why drug trafficking organisations started to use piracetam as heroin adulterant
Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84
Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3′-diindolylmethane. 3,3′-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3′-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine172, located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3′-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3′-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [3H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3′-diindolylmethane and was not affected adversely by mutation of arginine172. These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings
Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)
ACKNOWLEDGMENTS The work was supported by National Institutes of Health grants DA027113 and EY024717 to G.A.T. and DA09158 to A.M. A portion of this work was submitted in 2011 by A. Kulkarni in partial fulfillment of M.S. degree requirements from Northeastern University, Boston, MA.Peer reviewe
Recommended from our members
Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor.
The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (µ-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to µ-OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of µ-OR. We further show that positive allosteric modulators of µ-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell-free, signal transduction-independent and is generally applicable to GPCRs
Effects of insecticidal ketones present in mint plants on GABA A receptor from mammalian neurons
The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABAA receptor (GABAA-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor.Fil: Sánchez, Mariela Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Delgado Marín, Leticia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Garcia, Daniel Asmed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
- …
