103,722 research outputs found

    Quenched Dislocation Enhanced Supersolid Ordering

    Full text link
    I show using Landau theory that quenched dislocations can facilitate the supersolid (SS) to normal solid (NS) transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the SS to NS transition temperature T_c(L), superfluid density %\rho_S(T, L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.Comment: 5 pages, 2 figure

    Dislocation Dynamics in an Anisotropic Stripe Pattern

    Full text link
    The dynamics of dislocations confined to grain boundaries in a striped system are studied using electroconvection in the nematic liquid crystal N4. In electroconvection, a striped pattern of convection rolls forms for sufficiently high driving voltages. We consider the case of a rapid change in the voltage that takes the system from a uniform state to a state consisting of striped domains with two different wavevectors. The domains are separated by domain walls along one axis and a grain boundary of dislocations in the perpendicular direction. The pattern evolves through dislocation motion parallel to the domain walls. We report on features of the dislocation dynamics. The kinetics of the domain motion are quantified using three measures: dislocation density, average domain wall length, and the total domain wall length per area. All three quantities exhibit behavior consistent with power law evolution in time, with the defect density decaying as t1/3t^{-1/3}, the average domain wall length growing as t1/3t^{1/3}, and the total domain wall length decaying as t1/5t^{-1/5}. The two different exponents are indicative of the anisotropic growth of domains in the system.Comment: 8 figures: 7 jpeg and 1 pd

    Accuracy and transferability of Gaussian approximation potential models for tungsten

    Get PDF
    We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian approximation potential framework, fitted to a database of first-principles density functional theory calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties observable only using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org

    Continuum dynamics of the formation, migration and dissociation of self-locked dislocation structures on parallel slip planes

    Full text link
    In continuum models of dislocations, proper formulations of short-range elastic interactions of dislocations are crucial for capturing various types of dislocation patterns formed in crystalline materials. In this article, the continuum dynamics of straight dislocations distributed on two parallel slip planes is modelled through upscaling the underlying discrete dislocation dynamics. Two continuum velocity field quantities are introduced to facilitate the discrete-to-continuum transition. The first one is the local migration velocity of dislocation ensembles which is found fully independent of the short-range dislocation correlations. The second one is the decoupling velocity of dislocation pairs controlled by a threshold stress value, which is proposed to be the effective flow stress for single slip systems. Compared to the almost ubiquitously adopted Taylor relationship, the derived flow stress formula exhibits two features that are more consistent with the underlying discrete dislocation dynamics: i) the flow stress increases with the in-plane component of the dislocation density only up to a certain value, hence the derived formula admits a minimum inter-dislocation distance within slip planes; ii) the flow stress smoothly transits to zero when all dislocations become geometrically necessary dislocations. A regime under which inhomogeneities in dislocation density grow is identified, and is further validated through comparison with discrete dislocation dynamical simulation results. Based on the findings in this article and in our previous works, a general strategy for incorporating short-range dislocation correlations in continuum models of dislocations is proposed

    Slip energy barriers in aluminum and implications for ductile versus brittle behavior

    Full text link
    We conisder the brittle versus ductile behavior of aluminum in the framework of the Peierls-model analysis of dislocation emission from a crack tip. To this end, we perform first-principles quantum mechanical calculations for the unstable stacking energy γus\gamma_{us} of aluminum along the Shockley partial slip route. Our calculations are based on density functional theory and the local density approximation and include full atomic and volume relaxation. We find that in aluminum γus=0.224\gamma_{us} = 0.224 J/m2^2. Within the Peierls-model analysis, this value would predict a brittle solid which poses an interesting problem since aluminum is typically considered ductile. The resolution may be given by one of three possibilites: (a) Aluminum is indeed brittle at zero temperature, and becomes ductile at a finite temperature due to motion of pre-existing dislocations which relax the stress concentration at the crack tip. (b) Dislocation emission at the crack tip is itself a thermally activated process. (c) Aluminum is actually ductile at all temperatures and the theoretical model employed needs to be significantly improved in order to resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]

    The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy

    Get PDF
    The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of superlattice intrinsic stacking faults (SISFs). These faults have also been reported in other ordered alloys and superalloys
    corecore