164,854 research outputs found

    On algorithmic rate-coded AER generation

    Get PDF
    This paper addresses the problem of converting a conventional video stream based on sequences of frames into the spike event-based representation known as the address-event-representation (AER). In this paper we concentrate on rate-coded AER. The problem is addressed as an algorithmic problem, in which different methods are proposed, implemented and tested through software algorithms. The proposed algorithms are comparatively evaluated according to different criteria. Emphasis is put on the potential of such algorithms for a) doing the frame-based to event-based representation in real time, and b) that the resulting event streams ressemble as much as possible those generated naturally by rate-coded address-event VLSI chips, such as silicon AER retinae. It is found that simple and straightforward algorithms tend to have high potential for real time but produce event distributions that differ considerably from those obtained in AER VLSI chips. On the other hand, sophisticated algorithms that yield better event distributions are not efficient for real time operations. The methods based on linear-feedback-shift-register (LFSR) pseudorandom number generation is a good compromise, which is feasible for real time and yield reasonably well distributed events in time. Our software experiments, on a 1.6-GHz Pentium IV, show that at 50% AER bus load the proposed algorithms require between 0.011 and 1.14 ms per 8 bit-pixel per frame. One of the proposed LFSR methods is implemented in real time hardware using a prototyping board that includes a VirtexE 300 FPGA. The demonstration hardware is capable of transforming frames of 64 times; 64 pixels of 8-bit depth at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.European Union IST-2001-34124Gobierno de España TIC-2000-0406-P4, TIC-2003-08164-C03-0

    Polynomial Lie algebra methods in solving the second-harmonic generation model: some exact and approximate calculations

    Get PDF
    We compare exact and SU(2)-cluster approximate calculation schemes to determine dynamics of the second-harmonic generation model using its reformulation in terms of a polynomial Lie algebra supd(2)su_{pd}(2) and related spectral representations of the model evolution operator realized in algorithmic forms. It enabled us to implement computer experiments exhibiting a satisfactory accuracy of the cluster approximations in a large range of characteristic model parameters.Comment: LaTex file, 13 pages, 3 figure

    Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning

    Full text link
    Intrinsically motivated spontaneous exploration is a key enabler of autonomous lifelong learning in human children. It enables the discovery and acquisition of large repertoires of skills through self-generation, self-selection, self-ordering and self-experimentation of learning goals. We present an algorithmic approach called Intrinsically Motivated Goal Exploration Processes (IMGEP) to enable similar properties of autonomous or self-supervised learning in machines. The IMGEP algorithmic architecture relies on several principles: 1) self-generation of goals, generalized as fitness functions; 2) selection of goals based on intrinsic rewards; 3) exploration with incremental goal-parameterized policy search and exploitation of the gathered data with a batch learning algorithm; 4) systematic reuse of information acquired when targeting a goal for improving towards other goals. We present a particularly efficient form of IMGEP, called Modular Population-Based IMGEP, that uses a population-based policy and an object-centered modularity in goals and mutations. We provide several implementations of this architecture and demonstrate their ability to automatically generate a learning curriculum within several experimental setups including a real humanoid robot that can explore multiple spaces of goals with several hundred continuous dimensions. While no particular target goal is provided to the system, this curriculum allows the discovery of skills that act as stepping stone for learning more complex skills, e.g. nested tool use. We show that learning diverse spaces of goals with intrinsic motivations is more efficient for learning complex skills than only trying to directly learn these complex skills

    Two Challenges in Simulating the Social Processes of Science

    Get PDF
    This note discusses two challenges to simulating the social process of science. The first is developing an adequately rich representation of the underlying Data Generation Process which scientific progress can \"learn\". The second is how to get effective data on what, in broad terms, the properties of the \"future\" are. Paradoxically, with due care, we may learn a lot about the future by studying the past.Simulating Science, Algorithmic Chemistry, Evolutionary Algorithms, Data Structures, Learning Systems

    Automatic generation of level maps with the do what's possible representation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the do what's possible representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.Final Accepted Versio
    corecore