164,854 research outputs found
On algorithmic rate-coded AER generation
This paper addresses the problem of converting a conventional video stream based on sequences of frames into the spike event-based representation known as the address-event-representation (AER). In this paper we concentrate on rate-coded AER. The problem is addressed as an algorithmic problem, in which different methods are proposed, implemented and tested through software algorithms. The proposed algorithms are comparatively evaluated according to different criteria. Emphasis is put on the potential of such algorithms for a) doing the frame-based to event-based representation in real time, and b) that the resulting event streams ressemble as much as possible those generated naturally by rate-coded address-event VLSI chips, such as silicon AER retinae. It is found that simple and straightforward algorithms tend to have high potential for real time but produce event distributions that differ considerably from those obtained in AER VLSI chips. On the other hand, sophisticated algorithms that yield better event distributions are not efficient for real time operations. The methods based on linear-feedback-shift-register (LFSR) pseudorandom number generation is a good compromise, which is feasible for real time and yield reasonably well distributed events in time. Our software experiments, on a 1.6-GHz Pentium IV, show that at 50% AER bus load the proposed algorithms require between 0.011 and 1.14 ms per 8 bit-pixel per frame. One of the proposed LFSR methods is implemented in real time hardware using a prototyping board that includes a VirtexE 300 FPGA. The demonstration hardware is capable of transforming frames of 64 times; 64 pixels of 8-bit depth at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.European Union IST-2001-34124Gobierno de España TIC-2000-0406-P4, TIC-2003-08164-C03-0
Polynomial Lie algebra methods in solving the second-harmonic generation model: some exact and approximate calculations
We compare exact and SU(2)-cluster approximate calculation schemes to
determine dynamics of the second-harmonic generation model using its
reformulation in terms of a polynomial Lie algebra and related
spectral representations of the model evolution operator realized in
algorithmic forms. It enabled us to implement computer experiments exhibiting a
satisfactory accuracy of the cluster approximations in a large range of
characteristic model parameters.Comment: LaTex file, 13 pages, 3 figure
Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning
Intrinsically motivated spontaneous exploration is a key enabler of
autonomous lifelong learning in human children. It enables the discovery and
acquisition of large repertoires of skills through self-generation,
self-selection, self-ordering and self-experimentation of learning goals. We
present an algorithmic approach called Intrinsically Motivated Goal Exploration
Processes (IMGEP) to enable similar properties of autonomous or self-supervised
learning in machines. The IMGEP algorithmic architecture relies on several
principles: 1) self-generation of goals, generalized as fitness functions; 2)
selection of goals based on intrinsic rewards; 3) exploration with incremental
goal-parameterized policy search and exploitation of the gathered data with a
batch learning algorithm; 4) systematic reuse of information acquired when
targeting a goal for improving towards other goals. We present a particularly
efficient form of IMGEP, called Modular Population-Based IMGEP, that uses a
population-based policy and an object-centered modularity in goals and
mutations. We provide several implementations of this architecture and
demonstrate their ability to automatically generate a learning curriculum
within several experimental setups including a real humanoid robot that can
explore multiple spaces of goals with several hundred continuous dimensions.
While no particular target goal is provided to the system, this curriculum
allows the discovery of skills that act as stepping stone for learning more
complex skills, e.g. nested tool use. We show that learning diverse spaces of
goals with intrinsic motivations is more efficient for learning complex skills
than only trying to directly learn these complex skills
Recommended from our members
The use of sequencing information in software specification for verification
Software requirements specifications, virtual machine definitions, and algorithmic design all place constraints on the sequence of operations that are permissible during a program's execution. This paper discusses how these constraints can be captured and used to aid in the program verification process. The sequencing constraints can be expressed as a grammar over the alphabet of program operations. Several techniques can be used in support of testing or verification based on these specifications. Dynamic aalysis and static analysis are considered here. The automatic generation of some of these aids is feasible; the means of doing so is described
Two Challenges in Simulating the Social Processes of Science
This note discusses two challenges to simulating the social process of science. The first is developing an adequately rich representation of the underlying Data Generation Process which scientific progress can \"learn\". The second is how to get effective data on what, in broad terms, the properties of the \"future\" are. Paradoxically, with due care, we may learn a lot about the future by studying the past.Simulating Science, Algorithmic Chemistry, Evolutionary Algorithms, Data Structures, Learning Systems
Automatic generation of level maps with the do what's possible representation
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the do what's possible representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.Final Accepted Versio
- …
