43,275 research outputs found

    A Moral Framework for Understanding of Fair ML through Economic Models of Equality of Opportunity

    Full text link
    We map the recently proposed notions of algorithmic fairness to economic models of Equality of opportunity (EOP)---an extensively studied ideal of fairness in political philosophy. We formally show that through our conceptual mapping, many existing definition of algorithmic fairness, such as predictive value parity and equality of odds, can be interpreted as special cases of EOP. In this respect, our work serves as a unifying moral framework for understanding existing notions of algorithmic fairness. Most importantly, this framework allows us to explicitly spell out the moral assumptions underlying each notion of fairness, and interpret recent fairness impossibility results in a new light. Last but not least and inspired by luck egalitarian models of EOP, we propose a new family of measures for algorithmic fairness. We illustrate our proposal empirically and show that employing a measure of algorithmic (un)fairness when its underlying moral assumptions are not satisfied, can have devastating consequences for the disadvantaged group's welfare

    Human Perceptions of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Prediction

    Full text link
    As algorithms are increasingly used to make important decisions that affect human lives, ranging from social benefit assignment to predicting risk of criminal recidivism, concerns have been raised about the fairness of algorithmic decision making. Most prior works on algorithmic fairness normatively prescribe how fair decisions ought to be made. In contrast, here, we descriptively survey users for how they perceive and reason about fairness in algorithmic decision making. A key contribution of this work is the framework we propose to understand why people perceive certain features as fair or unfair to be used in algorithms. Our framework identifies eight properties of features, such as relevance, volitionality and reliability, as latent considerations that inform people's moral judgments about the fairness of feature use in decision-making algorithms. We validate our framework through a series of scenario-based surveys with 576 people. We find that, based on a person's assessment of the eight latent properties of a feature in our exemplar scenario, we can accurately (> 85%) predict if the person will judge the use of the feature as fair. Our findings have important implications. At a high-level, we show that people's unfairness concerns are multi-dimensional and argue that future studies need to address unfairness concerns beyond discrimination. At a low-level, we find considerable disagreements in people's fairness judgments. We identify root causes of the disagreements, and note possible pathways to resolve them.Comment: To appear in the Proceedings of the Web Conference (WWW 2018). Code available at https://fate-computing.mpi-sws.org/procedural_fairness

    A Confidence-Based Approach for Balancing Fairness and Accuracy

    Full text link
    We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group. Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error. Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm

    Matching Code and Law: Achieving Algorithmic Fairness with Optimal Transport

    Full text link
    Increasingly, discrimination by algorithms is perceived as a societal and legal problem. As a response, a number of criteria for implementing algorithmic fairness in machine learning have been developed in the literature. This paper proposes the Continuous Fairness Algorithm (CFAθ\theta) which enables a continuous interpolation between different fairness definitions. More specifically, we make three main contributions to the existing literature. First, our approach allows the decision maker to continuously vary between specific concepts of individual and group fairness. As a consequence, the algorithm enables the decision maker to adopt intermediate ``worldviews'' on the degree of discrimination encoded in algorithmic processes, adding nuance to the extreme cases of ``we're all equal'' (WAE) and ``what you see is what you get'' (WYSIWYG) proposed so far in the literature. Second, we use optimal transport theory, and specifically the concept of the barycenter, to maximize decision maker utility under the chosen fairness constraints. Third, the algorithm is able to handle cases of intersectionality, i.e., of multi-dimensional discrimination of certain groups on grounds of several criteria. We discuss three main examples (credit applications; college admissions; insurance contracts) and map out the legal and policy implications of our approach. The explicit formalization of the trade-off between individual and group fairness allows this post-processing approach to be tailored to different situational contexts in which one or the other fairness criterion may take precedence. Finally, we evaluate our model experimentally.Comment: Vastly extended new version, now including computational experiment

    Fair assignment of indivisible objects under ordinal preferences

    Full text link
    We consider the discrete assignment problem in which agents express ordinal preferences over objects and these objects are allocated to the agents in a fair manner. We use the stochastic dominance relation between fractional or randomized allocations to systematically define varying notions of proportionality and envy-freeness for discrete assignments. The computational complexity of checking whether a fair assignment exists is studied for these fairness notions. We also characterize the conditions under which a fair assignment is guaranteed to exist. For a number of fairness concepts, polynomial-time algorithms are presented to check whether a fair assignment exists. Our algorithmic results also extend to the case of unequal entitlements of agents. Our NP-hardness result, which holds for several variants of envy-freeness, answers an open question posed by Bouveret, Endriss, and Lang (ECAI 2010). We also propose fairness concepts that always suggest a non-empty set of assignments with meaningful fairness properties. Among these concepts, optimal proportionality and optimal weak proportionality appear to be desirable fairness concepts.Comment: extended version of a paper presented at AAMAS 201
    corecore