422,660 research outputs found

    Computational algebraic methods in efficient estimation

    Full text link
    A strong link between information geometry and algebraic statistics is made by investigating statistical manifolds which are algebraic varieties. In particular it it shown how first and second order efficient estimators can be constructed, such as bias corrected Maximum Likelihood and more general estimators, and for which the estimating equations are purely algebraic. In addition it is shown how Gr\"obner basis technology, which is at the heart of algebraic statistics, can be used to reduce the degrees of the terms in the estimating equations. This points the way to the feasible use, to find the estimators, of special methods for solving polynomial equations, such as homotopy continuation methods. Simple examples are given showing both equations and computations. *** The proof of Theorem 2 was corrected by the latest version. Some minor errors were also corrected.Comment: 21 pages, 5 figure

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Algebraic methods for dynamic systems

    Get PDF
    Algebraic methods for application to dynamic control system

    Algebraic Methods of Classifying Directed Graphical Models

    Full text link
    Directed acyclic graphical models (DAGs) are often used to describe common structural properties in a family of probability distributions. This paper addresses the question of classifying DAGs up to an isomorphism. By considering Gaussian densities, the question reduces to verifying equality of certain algebraic varieties. A question of computing equations for these varieties has been previously raised in the literature. Here it is shown that the most natural method adds spurious components with singular principal minors, proving a conjecture of Sullivant. This characterization is used to establish an algebraic criterion for isomorphism, and to provide a randomized algorithm for checking that criterion. Results are applied to produce a list of the isomorphism classes of tree models on 4,5, and 6 nodes. Finally, some evidence is provided to show that projectivized DAG varieties contain useful information in the sense that their relative embedding is closely related to efficient inference
    corecore