422,660 research outputs found
Computational algebraic methods in efficient estimation
A strong link between information geometry and algebraic statistics is made
by investigating statistical manifolds which are algebraic varieties. In
particular it it shown how first and second order efficient estimators can be
constructed, such as bias corrected Maximum Likelihood and more general
estimators, and for which the estimating equations are purely algebraic. In
addition it is shown how Gr\"obner basis technology, which is at the heart of
algebraic statistics, can be used to reduce the degrees of the terms in the
estimating equations. This points the way to the feasible use, to find the
estimators, of special methods for solving polynomial equations, such as
homotopy continuation methods. Simple examples are given showing both equations
and computations. *** The proof of Theorem 2 was corrected by the latest
version. Some minor errors were also corrected.Comment: 21 pages, 5 figure
Algebraic Methods in the Congested Clique
In this work, we use algebraic methods for studying distance computation and
subgraph detection tasks in the congested clique model. Specifically, we adapt
parallel matrix multiplication implementations to the congested clique,
obtaining an round matrix multiplication algorithm, where
is the exponent of matrix multiplication. In conjunction
with known techniques from centralised algorithmics, this gives significant
improvements over previous best upper bounds in the congested clique model. The
highlight results include:
-- triangle and 4-cycle counting in rounds, improving upon the
triangle detection algorithm of Dolev et al. [DISC 2012],
-- a -approximation of all-pairs shortest paths in
rounds, improving upon the -round -approximation algorithm of Nanongkai [STOC 2014], and
-- computing the girth in rounds, which is the first
non-trivial solution in this model.
In addition, we present a novel constant-round combinatorial algorithm for
detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266
Algebraic methods for dynamic systems
Algebraic methods for application to dynamic control system
Algebraic Methods of Classifying Directed Graphical Models
Directed acyclic graphical models (DAGs) are often used to describe common
structural properties in a family of probability distributions. This paper
addresses the question of classifying DAGs up to an isomorphism. By considering
Gaussian densities, the question reduces to verifying equality of certain
algebraic varieties. A question of computing equations for these varieties has
been previously raised in the literature. Here it is shown that the most
natural method adds spurious components with singular principal minors, proving
a conjecture of Sullivant. This characterization is used to establish an
algebraic criterion for isomorphism, and to provide a randomized algorithm for
checking that criterion. Results are applied to produce a list of the
isomorphism classes of tree models on 4,5, and 6 nodes. Finally, some evidence
is provided to show that projectivized DAG varieties contain useful information
in the sense that their relative embedding is closely related to efficient
inference
- …
