286,867 research outputs found
Contrast-associated acute kidney injury : does it really exist, and if so, what to do about it?
For decades, when contrast agents are administrated, physicians have been concerned because of the risk of inducing acute kidney injury (AKI). Recent literature questions the existence of AKI induced by contrast, but animal studies clearly showed harmful effects. The occurrence of contrast-associated AKI was likely overestimated in the past because of confounders for AKI. Several strategies have been investigated to reduce contrast-associated AKI but even for the most important one, hydration, there are conflicting data. Even if the occurrence rate of contrast-associated AKI is low, AKI is related to worse outcomes. Therefore, besides limiting contrast agent usage, general AKI preventive measurements should be applied in at-risk patients
Effect of multiple episodes of Acute Kidney Injury on mortality:an observational study
Background Patients who survive an episode of acute kidney injury (AKI) are more likely to have further episodes of AKI. AKI is associated with increased mortality, with a further increase with recurrent episodes. It is not clear whether this is due to AKI or as a result of other patient characteristics. The aim of this study was to establish whether recurrence of AKI is an independent risk factor for mortality or if excess mortality is explained by other factors. Methods This observational cohort study included adult people from the Tayside region of Scotland, with an episode of AKI between 1 January 2009 and 31 December 2009. AKI was defined using the creatinine-based Kidney Disease: Improving Global Outcomes definition. Associations between recurrent AKI and mortality were examined using a Cox proportional hazards model. Results Survival was worse in the group identified to have recurrent AKI compared with those with a single episode of AKI [hazard ratio = 1.49, 95% confidence interval (CI) 1.37–1.63; P
Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study.
Endothelial dysfunction contributes to the development of acute kidney injury (AKI) in animal models of ischemia reperfusion injury and sepsis. There are limited data on markers of endothelial dysfunction in human AKI. We hypothesized that Protein C (PC) and soluble thrombomodulin (sTM) levels could predict AKI. We conducted a multicenter prospective study in 80 patients to assess the relationship of PC and sTM levels to AKI, defined by the AKIN creatinine (AKI Scr) and urine output criteria (AKI UO). We measured marker levels for up to 10 days from intensive care unit admission. We used area under the curve (AUC) and time-dependent multivariable Cox proportional hazard model to predict AKI and logistic regression to predict mortality/non-renal recovery. Protein C and sTM were not different in patients with AKI UO only versus no AKI. On intensive care unit admission, as PC levels are usually lower with AKI Scr, the AUC to predict the absence of AKI was 0.63 (95%CI 0.44-0.78). The AUC using log10 sTM levels to predict AKI was 0.77 (95%CI 0.62-0.89), which predicted AKI Scr better than serum and urine neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C, urine kidney injury molecule-1 and liver-fatty acid-binding protein. In multivariable models, PC and urine NGAL levels independently predicted AKI (p=0.04 and 0.02) and PC levels independently predicted mortality/non-renal recovery (p=0.04). In our study, PC and sTM levels can predict AKI Scr but are not modified during AKI UO alone. PC levels could independently predict mortality/non-renal recovery. Additional larger studies are needed to define the relationship between markers of endothelial dysfunction and AKI
Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism.
Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth
What is the real impact of acute kidney injury?
Background: Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods: A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results: The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions: This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI
Do acute elevations of serum creatinine in primary care engender an increased mortality risk?
Background: The significant impact Acute Kidney Injury (AKI) has on patient morbidity and mortality emphasizes the need for early recognition and effective treatment. AKI presenting to or occurring during hospitalisation has been widely studied but little is known about the incidence and outcomes of patients experiencing acute elevations in serum creatinine in the primary care setting where people are not subsequently admitted to hospital. The aim of this study was to define this incidence and explore its impact on mortality. Methods: The study cohort was identified by using hospital data bases over a six month period. Inclusion criteria: People with a serum creatinine request during the study period, 18 or over and not on renal replacement therapy. The patients were stratified by a rise in serum creatinine corresponding to the Acute Kidney Injury Network (AKIN) criteria for comparison purposes. Descriptive and survival data were then analysed. Ethical approval was granted from National Research Ethics Service (NRES) Committee South East Coast and from the National Information Governance Board. Results: The total study population was 61,432. 57,300 subjects with ‘no AKI’, mean age 64.The number (mean age) of acute serum creatinine rises overall were, ‘AKI 1’ 3,798 (72), ‘AKI 2’ 232 (73), and ‘AKI 3’ 102 (68) which equates to an overall incidence of 14,192 pmp/year (adult). Unadjusted 30 day survival was 99.9% in subjects with ‘no AKI’, compared to 98.6%, 90.1% and 82.3% in those with ‘AKI 1’, ‘AKI 2’ and ‘AKI 3’ respectively. After multivariable analysis adjusting for age, gender, baseline kidney function and co-morbidity the odds ratio of 30 day mortality was 5.3 (95% CI 3.6, 7.7), 36.8 (95% CI 21.6, 62.7) and 123 (95% CI 64.8, 235) respectively, compared to those without acute serum creatinine rises as defined. Conclusions: People who develop acute elevations of serum creatinine in primary care without being admitted to hospital have significantly worse outcomes than those with stable kidney function
Recommended from our members
Research-based versus clinical serum creatinine measurements and the association of acute kidney injury with subsequent kidney function: findings from the Chronic Renal Insufficiency Cohort study.
Background:Observational studies relying on clinically obtained data have shown that acute kidney injury (AKI) is linked to accelerated chronic kidney disease (CKD) progression. However, prior reports lacked uniform collection of important confounders such as proteinuria and pre-AKI kidney function trajectory, and may be susceptible to ascertainment bias, as patients may be more likely to undergo kidney function testing after AKI. Methods:We studied 444 adults with CKD who participated in the prospective Chronic Renal Insufficiency Cohort (CRIC) Study and were concurrent members of a large integrated healthcare delivery system. We estimated glomerular filtration rate (eGFR) trajectories using serum creatinine measurements from (i) the CRIC research protocol (yearly) and (ii) routine clinical care. We used linear mixed effects models to evaluate the associations of AKI with acute absolute change in eGFR and post-AKI eGFR slope, and explored whether these varied by source of creatinine results. Models were adjusted for demographic characteristics, diabetes status and albuminuria. Results:During median follow-up of 8.5 years, mean rate of eGFR loss was -0.31 mL/min/1.73 m2/year overall, and 73 individuals experienced AKI (55% Stage 1). A significant interaction existed between AKI and source of serum creatinine for acute absolute change in eGFR level after discharge; in contrast, AKI was independently associated with a faster rate of eGFR decline (mean additional loss of -0.67 mL/min/1.73 m2/year), which was not impacted by source of serum creatinine. Conclusions:AKI is independently associated with subsequent steeper eGFR decline regardless of the serum creatinine source used, but the strength of association is smaller than observed in prior studies after taking into account key confounders such as pre-AKI eGFR slope and albuminuria
Prognostic robustness of serum creatinine based AKI definitions in patients with sepsis: a prospective cohort study
Background: It is unclear how modifications in the way to calculate serum creatinine (sCr) increase and in the cut-off value applied, influences the prognostic value of Acute Kidney Injury (AKI). We wanted to evaluate whether these modifications alter the prognostic value of AKI for prediction of mortality at 3 months, 1 and 2 years.
Methods: We prospectively included 195 septic patients and evaluated the prognostic value of AKI by using three different algorithms to calculate sCr increase: either as the difference between the highest value in the first 24 h after ICU admission and a pre-admission historical (Delta HIS) or an estimated (Delta EST) baseline value, or by subtracting the ICU admission value from the sCr value 24 h after ICU admission (Delta ADM). Different cut-off levels of sCr increase (0.1, 0.2, 0.3, 0.4 and 0.5 mg/dl) were evaluated.
Results: Mortality at 3 months, 1 and 2 years in AKI defined as Delta ADM > 0.3 mg/dl was 48.1 %, 63.0 % and 63.0 % vs 27.7 %, 39.8 % and 47.6 % in no AKI respectively (OR(95%CI): 2.42(1.06-5.54), 2.58(1.11-5.97) and 1.87(0.81-4.33); 0.3 mg/dl was the lowest cut-off value that was discriminatory. When AKI was defined as Delta HIS > 0.3 mg/dl or Delta EST > 0.3 mg/dl, there was no significant difference in mortality between AKI and no AKI.
Conclusions: The prognostic value of a 0.3 mg/dl increase in sCr, on mortality in sepsis, depends on how this sCr increase is calculated. Only if the evolution of serum creatinine over the first 24 h after ICU admission is taken into account, an association with mortality is found
- …
