16,691 research outputs found

    Fluctuation-driven capacity distribution in complex networks

    Full text link
    Maximizing robustness and minimizing cost are common objectives in the design of infrastructure networks. However, most infrastructure networks evolve and operate in a highly decentralized fashion, which may significantly impact the allocation of resources across the system. Here, we investigate this question by focusing on the relation between capacity and load in different types of real-world communication and transportation networks. We find strong empirical evidence that the actual capacity of the network elements tends to be similar to the maximum available capacity, if the cost is not strongly constraining. As more weight is given to the cost, however, the capacity approaches the load nonlinearly. In particular, all systems analyzed show larger unoccupied portions of the capacities on network elements subjected to smaller loads, which is in sharp contrast with the assumptions involved in (linear) models proposed in previous theoretical studies. We describe the observed behavior of the capacity-load relation as a function of the relative importance of the cost by using a model that optimizes capacities to cope with network traffic fluctuations. These results suggest that infrastructure systems have evolved under pressure to minimize local failures, but not necessarily global failures that can be caused by the spread of local damage through cascading processes

    Unsupervised Learning from Narrated Instruction Videos

    Full text link
    We address the problem of automatically learning the main steps to complete a certain task, such as changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold. First, we develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method solves two clustering problems, one in text and one in video, applied one after each other and linked by joint constraints to obtain a single coherent sequence of steps in both modalities. Second, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains about 800,000 frames for five different tasks that include complex interactions between people and objects, and are captured in a variety of indoor and outdoor settings. Third, we experimentally demonstrate that the proposed method can automatically discover, in an unsupervised manner, the main steps to achieve the task and locate the steps in the input videos.Comment: Appears in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). 21 page

    Management of Mechanical Ventilation in Decompensated Heart Failure.

    Get PDF
    Mechanical ventilation (MV) is a life-saving intervention for respiratory failure, including decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages of positive pressure ventilation must be balanced with potential harm from MV: volutrauma, hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing on practical considerations for management and supporting evidence

    Graph Refinement based Airway Extraction using Mean-Field Networks and Graph Neural Networks

    Full text link
    Graph refinement, or the task of obtaining subgraphs of interest from over-complete graphs, can have many varied applications. In this work, we extract trees or collection of sub-trees from image data by, first deriving a graph-based representation of the volumetric data and then, posing the tree extraction as a graph refinement task. We present two methods to perform graph refinement. First, we use mean-field approximation (MFA) to approximate the posterior density over the subgraphs from which the optimal subgraph of interest can be estimated. Mean field networks (MFNs) are used for inference based on the interpretation that iterations of MFA can be seen as feed-forward operations in a neural network. This allows us to learn the model parameters using gradient descent. Second, we present a supervised learning approach using graph neural networks (GNNs) which can be seen as generalisations of MFNs. Subgraphs are obtained by training a GNN-based graph refinement model to directly predict edge probabilities. We discuss connections between the two classes of methods and compare them for the task of extracting airways from 3D, low-dose, chest CT data. We show that both the MFN and GNN models show significant improvement when compared to one baseline method, that is similar to a top performing method in the EXACT'09 Challenge, and a 3D U-Net based airway segmentation model, in detecting more branches with fewer false positives.Comment: Accepted for publication at Medical Image Analysis. 14 page

    Permutation inference methods for multivariate meta-analysis

    Full text link
    Multivariate meta-analysis is gaining prominence in evidence synthesis research because it enables simultaneous synthesis of multiple correlated outcome data, and random-effects models have generally been used for addressing between-studies heterogeneities. However, coverage probabilities of confidence regions or intervals for standard inference methods for random-effects models (e.g., restricted maximum likelihood estimation) cannot retain their nominal confidence levels in general, especially when the number of synthesized studies is small because their validities depend on large sample approximations. In this article, we provide permutation-based inference methods that enable exact joint inferences for average outcome measures without large sample approximations. We also provide accurate marginal inference methods under general settings of multivariate meta-analyses. We propose effective approaches for permutation inferences using optimal weighting based on the efficient score statistic. The effectiveness of the proposed methods is illustrated via applications to bivariate meta-analyses of diagnostic accuracy studies for airway eosinophilia in asthma and a network meta-analysis for antihypertensive drugs on incident diabetes, as well as through simulation experiments. In numerical evaluations performed via simulations, our methods generally provided accurate confidence regions or intervals under a broad range of settings, whereas the current standard inference methods exhibited serious undercoverage properties.Comment: 20 pages, 2 figures, 2 tabl

    New Spirometry Indices for Detecting Mild Airflow Obstruction.

    Get PDF
    The diagnosis of chronic obstructive pulmonary disease (COPD) relies on demonstration of airflow obstruction. Traditional spirometric indices miss a number of subjects with respiratory symptoms or structural lung disease on imaging. We hypothesized that utilizing all data points on the expiratory spirometry curves to assess their shape will improve detection of mild airflow obstruction and structural lung disease. We analyzed spirometry data of 8307 participants enrolled in the COPDGene study, and derived metrics of airflow obstruction based on the shape on the volume-time (Parameter D), and flow-volume curves (Transition Point and Transition Distance). We tested associations of these parameters with CT measures of lung disease, respiratory morbidity, and mortality using regression analyses. There were significant correlations between FEV1/FVC with Parameter D (r = -0.83; p < 0.001), Transition Point (r = 0.69; p < 0.001), and Transition Distance (r = 0.50; p < 0.001). All metrics had significant associations with emphysema, small airway disease, dyspnea, and respiratory-quality of life (p < 0.001). The highest quartile for Parameter D was independently associated with all-cause mortality (adjusted HR 3.22,95% CI 2.42-4.27; p < 0.001) but a substantial number of participants in the highest quartile were categorized as GOLD 0 and 1 by traditional criteria (1.8% and 33.7%). Parameter D identified an additional 9.5% of participants with mild or non-recognized disease as abnormal with greater burden of structural lung disease compared with controls. The data points on the flow-volume and volume-time curves can be used to derive indices of airflow obstruction that identify additional subjects with disease who are deemed to be normal by traditional criteria

    Connexin communication compartments and wound repair in epithelial tissue

    Get PDF
    Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems
    corecore