2,708,410 research outputs found

    Activity-dependence of synaptic vesicle dynamics

    Get PDF
    The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release.SIGNIFICANCE STATEMENTMechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function

    Postsynaptic protein kinase a reduces neuronal excitability in response to increased synaptic excitation in the Drosophila CNS

    Get PDF
    Previous work has identified a role for synaptic activity in the development of excitable properties of motoneurons in the Drosophila embryo. In this study the underlying mechanism that enables two such neurons, termed aCC and RP2, to respond to increased exposure to synaptic excitation is characterized. Synaptic excitation is increased in genetic backgrounds that lack either a cAMP-specific phosphodiesterase (EC:3.1.4, dunce) or acetylcholinesterase (EC:3.1.1.7, ace), the enzyme that terminates the endogenous cholinergic excitation of these motoneurons. Analysis of membrane excitability in aCC/RP2, in either background, shows that these neurons have a significantly reduced capability to fire action potentials (APs) in response to injection of depolarizing current. Analysis of underlying voltage-gated currents show that this effect is associated with a marked reduction in magnitude of the voltage-dependent inward Na+ current (INa). Partially blocking INa in these motoneurons, using low concentrations of TTX, demonstrates that a reduction of INa is, by itself, sufficient to reduce membrane excitability. An analysis of firing implicates an increased AP threshold to underlie the reduction in membrane excitability observed because of heightened exposure to synaptic excitation. Genetic or pharmacological manipulations that either elevate cAMP or increase protein kinase A (PKA) activity in wild-type aCC/RP2 mimic both the reductions in membrane excitability and INa. In comparison, increasing cAMP catabolism or inhibition of PKA activity is sufficient to block the induction of these activity-dependent changes. The induced changes in excitability can be rapid, occurring within 5 min of exposure to a membrane-permeable cAMP analog, indicative that threshold can be regulated in these neurons by a post-translational mechanism that is dependent on phosphorylation

    SIRT1 Activity Is Linked to Its Brain Region-Specific Phosphorylation and Is Impaired in Huntington’s Disease Mice

    Get PDF
    Huntingtons disease (HD) is a neurodegenerative disorder for which there are no disease-modifying treatments. SIRT1 is a NAD+-dependent protein deacetylase that is implicated in maintaining neuronal health during development, differentiation and ageing. Previous studies suggested that the modulation of SIRT1 activity is neuroprotective in HD mouse models, however, the mechanisms controlling SIRT1 activity are unknown. We have identified a striatum-specific phosphorylation-dependent regulatory mechanism of SIRT1 induction under normal physiological conditions, which is impaired in HD. We demonstrate that SIRT1 activity is down-regulated in the brains of two complementary HD mouse models, which correlated with altered SIRT1 phosphorylation levels. This SIRT1 impairment could not be rescued by the ablation of DBC1, a negative regulator of SIRT1, but was linked to changes in the sub-cellular distribution of AMPK-α1, a positive regulator of SIRT1 function. This work provides insights into the regulation of SIRT1 activity with the potential for the development of novel therapeutic strategies

    Modulation by cAMP of a Slowly Activating Potassium Channel Expressed in \u3cem\u3eXenopus\u3c/em\u3e Oocytes

    Get PDF
    When expressed in the Xenopus oocyte, the minK protein induces a slowly activating voltage-dependent potassium current (Isk). We studied the modulation of this current by altering intracellular cAMP levels and found that the amplitude of Isk is dramatically increased by treatments that raise cAMP levels and decreased by agents that lower cAMP levels. Preinjection of a protein inhibitor of the cAMP-dependent protein kinase blocked the effects of increased cAMP levels. There were no changes in the voltage dependence or kinetics of Isk. Mutations that eliminate a potential phosphorylation site on the minK protein did not block the effects of activating the kinase. In addition, the membrane capacitance of the oocyte increased and decreased in parallel with Isk. Our results fit a mechanism in which channel proteins are selectively inserted into and removed from the plasma membrane in response to changes in kinase activity

    A numerical model for Hodgkin-Huxley neural stimulus reconstruction

    Get PDF
    The information about a neural activity is encoded in a neural response and usually the underlying stimulus that triggers the activity is unknown. This paper presents a numerical solution to reconstruct stimuli from Hodgkin-Huxley neural responses while retrieving the neural dynamics. The stimulus is reconstructed by first retrieving the maximal conductances of the ion channels and then solving the Hodgkin-Huxley equations for the stimulus. The results show that the reconstructed stimulus is a good approximation of the original stimulus, while the retrieved the neural dynamics, which represent the voltage-dependent changes in the ion channels, help to understand the changes in neural biochemistry. As high non-linearity of neural dynamics renders analytical inversion of a neuron an arduous task, a numerical approach provides a local solution to the problem of stimulus reconstruction and neural dynamics retrieval

    Repeated \u3cem\u3eN\u3c/em\u3e-Acetylcysteine Administration Alters Plasticity-Dependent Effects of Cocaine

    Get PDF
    Cocaine produces a persistent reduction in cystine–glutamate exchange via system xc− in the nucleus accumbens that may contribute to pathological glutamate signaling linked to addiction. System xc− influences glutamate neurotransmission by maintaining basal, extracellular glutamate in the nucleus accumbens, which, in turn, shapes synaptic activity by stimulating group II metabotropic glutamate autoreceptors. In the present study, we tested the hypothesis that a long-term reduction in system xc− activity is part of the plasticity produced by repeated cocaine that results in the establishment of compulsive drug seeking. To test this, the cysteine prodrug N-acetylcysteine was administered before daily cocaine to determine the impact of increased cystine–glutamate exchange on the development of plasticity-dependent cocaine seeking. Although N-acetylcysteine administered before cocaine did not alter the acute effects of cocaine on self-administration or locomotor activity, it prevented behaviors produced by repeated cocaine including escalation of drug intake, behavioral sensitization, and cocaine-primed reinstatement. Because sensitization or reinstatement was not evident even 2–3 weeks after the last injection of N-acetylcysteine, we examined whether N-acetylcysteine administered before daily cocaine also prevented the persistent reduction in system xc− activity produced by repeated cocaine. Interestingly, N-acetylcysteine pretreatment prevented cocaine-induced changes in [35S]cystine transport via system xc−, basal glutamate, and cocaine-evoked glutamate in the nucleus accumbens when assessed at least 3 weeks after the last N-acetylcysteine pretreatment. These findings indicate that N-acetylcysteine selectively alters plasticity-dependent behaviors and that normal system xc− activity prevents pathological changes in extracellular glutamate that may be necessary for compulsive drug seeking
    corecore