4,624,033 research outputs found

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    An Active Set Algorithm for Nonlinear Optimization with Polyhedral Constraints

    Get PDF
    A polyhedral active set algorithm PASA is developed for solving a nonlinear optimization problem whose feasible set is a polyhedron. Phase one of the algorithm is the gradient projection method, while phase two is any algorithm for solving a linearly constrained optimization problem. Rules are provided for branching between the two phases. Global convergence to a stationary point is established, while asymptotically PASA performs only phase two when either a nondegeneracy assumption holds, or the active constraints are linearly independent and a strong second-order sufficient optimality condition holds

    Primal and dual active-set methods for convex quadratic programming

    Full text link
    Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate a sequence of iterates that are feasible with respect to the equality constraints associated with the optimality conditions of the primal-dual form. The primal method maintains feasibility of the primal inequalities while driving the infeasibilities of the dual inequalities to zero. The dual method maintains feasibility of the dual inequalities while moving to satisfy the primal inequalities. In each of these methods, the search directions satisfy a KKT system of equations formed from Hessian and constraint components associated with an appropriate column basis. The composition of the basis is specified by an active-set strategy that guarantees the nonsingularity of each set of KKT equations. Each of the proposed methods is a conventional active-set method in the sense that an initial primal- or dual-feasible point is required. In the second part of the paper, it is shown how the quadratic program may be solved as a coupled pair of primal and dual quadratic programs created from the original by simultaneously shifting the simple-bound constraints and adding a penalty term to the objective function. Any conventional column basis may be made optimal for such a primal-dual pair of shifted-penalized problems. The shifts are then updated using the solution of either the primal or the dual shifted problem. An obvious application of this approach is to solve a shifted dual QP to define an initial feasible point for the primal (or vice versa). The computational performance of each of the proposed methods is evaluated on a set of convex problems.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s10107-015-0966-

    Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

    Full text link
    State-of-the-art subspace clustering methods are based on expressing each data point as a linear combination of other data points while regularizing the matrix of coefficients with 1\ell_1, 2\ell_2 or nuclear norms. 1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad theoretical conditions, but the clusters may not be connected. 2\ell_2 and nuclear norm regularization often improve connectivity, but give a subspace-preserving affinity only for independent subspaces. Mixed 1\ell_1, 2\ell_2 and nuclear norm regularizations offer a balance between the subspace-preserving and connectedness properties, but this comes at the cost of increased computational complexity. This paper studies the geometry of the elastic net regularizer (a mixture of the 1\ell_1 and 2\ell_2 norms) and uses it to derive a provably correct and scalable active set method for finding the optimal coefficients. Our geometric analysis also provides a theoretical justification and a geometric interpretation for the balance between the connectedness (due to 2\ell_2 regularization) and subspace-preserving (due to 1\ell_1 regularization) properties for elastic net subspace clustering. Our experiments show that the proposed active set method not only achieves state-of-the-art clustering performance, but also efficiently handles large-scale datasets.Comment: 15 pages, 6 figures, accepted to CVPR 2016 for oral presentatio

    Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

    Full text link
    We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set blocks are merged into the constraint blocks. We discuss the robustness of the new preconditioners with respect to the parameters of the continuous and discrete problems. Numerical experiments on 3D problems are presented, including comparisons with existing approaches based on preconditioned conjugate gradients in a nonstandard inner product

    Active User Authentication for Smartphones: A Challenge Data Set and Benchmark Results

    Full text link
    In this paper, automated user verification techniques for smartphones are investigated. A unique non-commercial dataset, the University of Maryland Active Authentication Dataset 02 (UMDAA-02) for multi-modal user authentication research is introduced. This paper focuses on three sensors - front camera, touch sensor and location service while providing a general description for other modalities. Benchmark results for face detection, face verification, touch-based user identification and location-based next-place prediction are presented, which indicate that more robust methods fine-tuned to the mobile platform are needed to achieve satisfactory verification accuracy. The dataset will be made available to the research community for promoting additional research.Comment: 8 pages, 12 figures, 6 tables. Best poster award at BTAS 201
    corecore