13,424 research outputs found
Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation.
Agrin is thought to be the nerve-derived factor that initiates acetylcholine receptor (AChR) clustering at the developing neuromuscularjunction. We have investigated the signaling pathway in mouse C2 myotubes and report that agrin induces a rapid but transient tyrosine phosphorylation of the AChR beta subunit. As the beta-subunit tyrosine phosphorylation occurs before the formation of AChR clusters, it may serve as a precursor step in the clustering mechanism. Consistent with this, we observed that tyrosine phosphorylation of the beta subunit correlated precisely with the presence or absence of clustering under several experimental conditions. Moreover, two tyrosine kinase inhibitors, herbimycin and staurosporine, that blocked beta-subunit phosphorylation also blocked agrin-induced clustering. Surprisingly, the inhibitors also dispersed preformed AChR clusters, suggesting that the tyrosine phosphorylation of other proteins may be required for the maintenance of receptor clusters. These findings indicate that in mammalian muscle, agrin-induced AChR clustering occurs through a mechanism that requires tyrosine phosphorylation and may involve tyrosine phosphorylation of the AChR itself
Recommended from our members
The MX-Helix of Muscle nAChR Subunits Regulates Receptor Assembly and Surface Trafficking.
Nicotinic acetylcholine receptors (AChRs) are pentameric channels that mediate fast transmission at the neuromuscular junction (NMJ) and defects in receptor expression underlie neuromuscular disorders such as myasthenia gravis and congenital myasthenic syndrome (CMS). Nicotinic receptor expression at the NMJ is tightly regulated and we previously identified novel Golgi-retention signals in the β and δ subunit cytoplasmic loops that regulate trafficking of the receptor to the cell surface. Here, we show that the Golgi retention motifs are localized in the MX-helix, a juxta-membrane alpha-helix present in the proximal cytoplasmic loop of receptor subunits, which was defined in recent crystal structures of cys-loop receptor family members. First, mutational analysis of CD4-MX-helix chimeric proteins showed that the Golgi retention signal was dependent on both the amphipathic nature of the MX-helix and on specific lysine residues (βK353 and δK351). Moreover, retention was associated with ubiquitination of the lysines, and βK353R and δK351R mutations reduced ubiquitination and increased surface expression of CD4-β and δ MX-helix chimeric proteins. Second, mutation of these lysines in intact β and δ subunits perturbed Golgi-based glycosylation and surface trafficking of the AChR. Notably, combined βK353R and δK351R mutations increased the amount of surface AChR with immature forms of glycosylation, consistent with decreased Golgi retention and processing. Third, we found that previously identified CMS mutations in the ε subunit MX-helix decreased receptor assembly and surface levels, as did an analogous mutation introduced into the β subunit MX-helix. Together, these findings indicate that the subunit MX-helix contributes to receptor assembly and is required for normal expression of the AChR and function of the NMJ. In addition, specific determinants in the β and δ subunit MX-helix contribute to quality control of AChR expression by intracellular retention and ubiquitination of unassembled subunits, and by facilitating the appropriate glycosylation of assembled surface AChR
Agrin isoforms and their role in synaptogenesis
Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system
The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor
The published version of this article is available at Oxford Journals in Nucleic Acids Research at
http://nar.oxfordjournals.org/content/10/19/5809.full.pdf+htmlA rare cDNA coding for most of the α subunit of the Torpedo nicotinic acetylcholine receptor has been cloned into bacteria. The use of a mismatched oligonucleotide primer of reverse transcriptase facilitated the design of an efficient, specific probe for recombinant bacteria. DNA sequence analysis has enabled the elucidation of a large part of the polypeptide primary sequence which is discussed in relation to its acetylcholine binding activity and the location of receptor within the plasma membrane.
When used as a radioactive probe, the cloned cDNA binds specifically to a single Torpedo mRNA species of about 2350 nucleotides in length but fails to show significant cross-hybridisation with a subunit mRNA extracted from cat muscle
Expression and Circular Dichroism Studies of the Extracellular Domain of the alpha Subunit of the Nicotinic Acetylcholine Receptor
To provide material suitable for structural studies of the nicotinic acetylcholine receptor, we have expressed and purified the NH2-terminal extracellular domain of the mouse muscle alpha subunit. Several constructs were initially investigated using Xenopus oocytes as a convenient small scale expression system. A fusion protein (alpha210GPI) consisting of the 210 NH2-terminal amino acids of the alpha subunit and a glycosylphosphatidylinositol anchorage sequence conferred surface alpha-bungarotoxin binding in oocytes. Coexpression of alpha210GPI with an analogous construct made from the delta subunit showed no evidence of heterodimer formation. The alpha210GPI protein was chosen for large scale expression in transfected Chinese hamster ovary cells. The alpha210GPI protein was cleaved from these cells and purified on an immunoaffinity column. Gel and column chromatography show that the purified protein is processed as expected and exists as a monomer. The purified protein also retains the two distinct, conformation-specific binding sites expected for the correctly folded alpha subunit. Circular dichroism studies of alpha210GPI suggest that this region of the receptor includes considerable beta-sheet secondary structure, with a small proportion of alpha-helix
Caenorhabditis elegans muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity
The anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance. By using C. elegans, we here revealed the anthelmintic actions of three plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids produce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol. In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn, lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed an in vivo screening of selected strains carrying mutations in receptors involved in worm locomotion for determining resistance to the paralyzing effect of terpenoids. The assays revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sensitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect these receptors, we performed electrophysiological studies using a primary culture of C. elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpenoids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endogenous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed that terpenoids decrease the frequency of opening events, probably by acting as negative allosteric modulators. The fact that terpenoids act at different receptors may have important advantages regarding efficacy and development of resistance. Thus, our findings give support to the use of terpenoids as either an alternative or a complementary anthelmintic strategy to overcome the ever-increasing resistance of parasites to classical anthelmintic drugs.Fil: Hernando, Guillermina Silvana. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Turani, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentin
Association of spin-labeled local anesthetics at the hydrophobic surface of acetylcholine receptor in native membranes from Torpedo marmorata.
Recommended from our members
Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics.
Mood disorders are highly prevalent and are the leading cause of disability worldwide. The neurobiological mechanisms underlying depression remain poorly understood, although theories regarding dysfunction within various neurotransmitter systems have been postulated. Over 50 years ago, clinical studies suggested that increases in central acetylcholine could lead to depressed mood. Evidence has continued to accumulate suggesting that the cholinergic system has a important role in mood regulation. In particular, the finding that the antimuscarinic agent, scopolamine, exerts fast-onset and sustained antidepressant effects in depressed humans has led to a renewal of interest in the cholinergic system as an important player in the neurochemistry of major depression and bipolar disorder. Here, we synthesize current knowledge regarding the modulation of mood by the central cholinergic system, drawing upon studies from human postmortem brain, neuroimaging, and drug challenge investigations, as well as animal model studies. First, we describe an illustrative series of early discoveries which suggest a role for acetylcholine in the pathophysiology of mood disorders. Then, we discuss more recent studies conducted in humans and/or animals which have identified roles for both acetylcholinergic muscarinic and nicotinic receptors in different mood states, and as targets for novel therapies
Neurotransmitter-gated ion channels at fast chemical synapses: from structure to pathology
Fil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin
- …
