130,389 research outputs found
A hierarchical research by large-scale and ab initio electronic structure theories -- Si and Ge cleavage and stepped (111)-2x1 surfaces --
The ab initio calculation with the density functional theory and plane-wave
bases is carried out for stepped Si(111)-2x1 surfaces that were predicted in a
cleavage simulation by the large-scale (order-N) electronic structure theory
(T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B72 (2005) 075323). The
present ab initio calculation confirms the predicted stepped structure and its
bias-dependent STM image. Moreover, two (meta)stable step-edge structures are
found and compared. The investigation is carried out also for Ge(111)-2x1
surfaces, so as to construct a common understanding among elements. The present
study demonstrates the general importance of the hierarchical research between
large-scale and ab initio electronic structure theories.Comment: 5 pages, 4 figures, to appear in Physica
Ideal, Defective, and Gold--Promoted Rutile TiO2(110) Surfaces: Structures, Energies, Dynamics, and Thermodynamics from PBE+U
Extensive first principles calculations are carried out to investigate
gold-promoted TiO2(110) surfaces in terms of structure optimizations,
electronic structure analyses, ab initio thermodynamics calculations of surface
phase diagrams, and ab initio molecular dynamics simulations. All computations
rely on density functional theory in the generalized gradient approximation
(PBE) and account for on-site Coulomb interactions via inclusion of a Hubbard
correction, PBE+U, where U is computed from linear response theory. This
approach is validated by investigating the interaction between TiO2(110)
surfaces and typical probe species (H, H2O, CO). Relaxed structures and binding
energies are compared to both data from the literature and plain PBE results.
The main focus of the study is on the properties of gold-promoted titania
surfaces and their interactions with CO. Both PBE+U and PBE optimized
structures of Au adatoms adsorbed on stoichiometric and reduced TiO2 surfaces
are computed, along with their electronic structure. The charge rearrangement
induced by the adsorbates at the metal/oxide contact are also analyzed and
discussed. By performing PBE+U ab initio molecular dynamics simulations, it is
demonstrated that the diffusion of Au adatoms on the stoichiometric surface is
highly anisotropic. The metal atoms migrate either along the top of the
bridging oxygen rows, or around the area between these rows, from one bridging
position to the next along the [001] direction. Approximate ab initio
thermodynamics predicts that under O-rich conditions, structures obtained by
substituting a Ti5c atom with an Au atom are thermodynamically stable over a
wide range of temperatures and pressures.Comment: 20 pages, 12 figures, accepted for publication in Phys. Rev.
Zero-Temperature Structures of Atomic Metallic Hydrogen
Ab initio random structure searching with density functional theory was used
to determine the zero-temperature structures of atomic metallic hydrogen from
500 GPa to 5 TPa. Including zero point motion in the harmonic approximation, we
estimate that molecular hydrogen dissociates into a monatomic body-centered
tetragonal structure near 500 GPa (r_s = 1.225), which then remains stable to
2.5 TPa (r_s = 0.969). At higher pressures, hydrogen stabilizes in an
...ABCABC... planar structure that is remarkably similar to the ground state of
lithium, which compresses to the face-centered cubic lattice beyond 5 TPa (r_s
< 0.86). At this level of theory, our results provide a complete ab initio
description of the atomic metallic structures of hydrogen, resolving one of the
most fundamental and long outstanding issues concerning the structures of the
elements.Comment: 9 pages; 4 figure
Ab initio energy landscape of LiF clusters
A global search for possible LiF cluster structures is performed, up to
(LiF)8. The method is based on simulated annealing, where all the energies are
evaluated on the ab initio level. In addition, the threshold algorithm is
employed to determine the energy barriers for the transitions among these
structures, for the cluster (LiF)4, again on the ab initio level; and the
corresponding tree graph is obtained
Role of Self-Interaction Effects in the Geometry Optimization of Small Metal Clusters
By combining the Self-Interaction Correction (SIC) with pseudopotential
perturbation theory, the role of self-interaction errors inherent to the Local
Density Approximation (LDA) to Density Functional Theory is estimated in the
determination of ground state and low energy isomeric structures of small
metallic clusters. Its application to neutral sodium clusters with 8 and 20
atoms shows that the SIC provides sizeable effects in Na_8, leading to a
different ordering of the low lying isomeric states compared with ab-initio LDA
predictions, whereas for Na_20, the SIC effects are less pronounced, such that
a quantitative agreement is achieved between the present method and ab-initio
LDA calculations.Comment: RevTeX, 4 pages, 1 figure available from [email protected]
Ab initio Green's function formalism for band structures
Using the Green's function formalism, an ab initio theory for band structures
of crystals is derived starting from the Hartree-Fock approximation. It is
based on the algebraic diagrammatic construction scheme for the self-energy
which is formulated for crystal orbitals (CO-ADC). In this approach, the poles
of the Green's function are determined by solving a suitable Hermitian
eigenvalue problem. The method is not only applicable to the outer valence and
conduction bands, it is also stable for inner valence bands where strong
electron correlations are effective. The key to the proposed scheme is to
evaluate the self-energy in terms of Wannier orbitals before transforming it to
a crystal momentum representation. Exploiting the fact that electron
correlations are mainly local, one can truncate the lattice summations by an
appropriate configuration selection scheme. This yields a flat configuration
space; i.e., its size scales only linearly with the number of atoms per unit
cell for large systems and, under certain conditions, the computational effort
to determine band structures also scales linearly. As a first application of
the new formalism, a lithium fluoride crystal has been chosen. A minimal basis
set description is studied, and a satisfactory agreement with previous
theoretical and experimental results for the fundamental band gap and the width
of the F 2p valence band complex is obtained.Comment: 20 pages, 3 figures, 1 table, RevTeX4, new section on lithium
fluorid
The Effective Fragment Molecular Orbital Method for Fragments Connected by Covalent Bonds
We extend the effective fragment molecular orbital method (EFMO) into
treating fragments connected by covalent bonds. The accuracy of EFMO is
compared to FMO and conventional ab initio electronic structure methods for
polypeptides including proteins. Errors in energy for RHF and MP2 are within 2
kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides
similar to FMO but obtained two to five times faster. For proteins, the errors
are also within a few kcal/mol of the FMO results. We developed both the RHF
and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures
had an RMSD of 0.40 and 0.44 {\AA} for RHF and MP2, respectively.Comment: Revised manuscrip
Carbides and Nitrides of Zirconium and Hafnium.
Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40-60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions. New methods, such as electrical pulse heating and laser melting, can fill the gaps in experimental data and validate ab initio predictions
- …
