4,162,381 research outputs found

    Sherrington-Kirkpatrick model near T=TcT=T_c: expanding around the Replica Symmetric Solution

    Full text link
    An expansion for the free energy functional of the Sherrington-Kirkpatrick (SK) model, around the Replica Symmetric SK solution Qab(RS)=δab+q(1δab)Q^{({\rm RS})}_{ab} = \delta_{ab} + q(1-\delta_{ab}) is investigated. In particular, when the expansion is truncated to fourth order in. QabQab(RS)Q_{ab} - Q^{({\rm RS})}_{ab}. The Full Replica Symmetry Broken (FRSB) solution is explicitly found but it turns out to exist only in the range of temperature 0.549...TTc=10.549...\leq T\leq T_c=1, not including T=0. On the other hand an expansion around the paramagnetic solution Qab(PM)=δabQ^{({\rm PM})}_{ab} = \delta_{ab} up to fourth order yields a FRSB solution that exists in a limited temperature range 0.915...TTc=10.915...\leq T \leq T_c=1.Comment: 18 pages, 3 figure

    Perspective on gravitational self-force analyses

    Full text link
    A point particle of mass μ\mu moving on a geodesic creates a perturbation habh_{ab}, of the spacetime metric gabg_{ab}, that diverges at the particle. Simple expressions are given for the singular μ/r\mu/r part of habh_{ab} and its distortion caused by the spacetime. This singular part h^\SS_{ab} is described in different coordinate systems and in different gauges. Subtracting h^\SS_{ab} from habh_{ab} leaves a regular remainder habRh^\R_{ab}. The self-force on the particle from its own gravitational field adjusts the world line at \Or(\mu) to be a geodesic of gab+habRg_{ab}+h^\R_{ab}; this adjustment includes all of the effects of radiation reaction. For the case that the particle is a small non-rotating black hole, we give a uniformly valid approximation to a solution of the Einstein equations, with a remainder of \Or(\mu^2) as μ0\mu\to0. An example presents the actual steps involved in a self-force calculation. Gauge freedom introduces ambiguity in perturbation analysis. However, physically interesting problems avoid this ambiguity.Comment: 40 pages, to appear in a special issue of CQG on radiation reaction, contains additional references, improved notation for tensor harmonic

    Local freedom in the gravitational field

    Full text link
    In a cosmological context, the electric and magnetic parts of the Weyl tensor, E_{ab} and H_{ab}, represent the locally free curvature - i.e. they are not pointwise determined by the matter fields. By performing a complete covariant decomposition of the derivatives of E_{ab} and H_{ab}, we show that the parts of the derivative of the curvature which are locally free (i.e. not pointwise determined by the matter via the Bianchi identities) are exactly the symmetrised trace-free spatial derivatives of E_{ab} and H_{ab} together with their spatial curls. These parts of the derivatives are shown to be crucial for the existence of gravitational waves.Comment: New results on gravitational waves included; new references added; revised version (IOP style) to appear Class. Quantum Gra

    Variational Principles for Natural Divergence-free Tensors in Metric Field Theories

    Full text link
    Let Tab=Tba=0T^{ab}=T^{ba}=0 be a system of differential equations for the components of a metric tensor on RmR^m. Suppose that TabT^{ab} transforms tensorially under the action of the diffeomorphism group on metrics and that the covariant divergence of TabT^{ab} vanishes. We then prove that TabT^{ab} is the Euler-Lagrange expression some Lagrangian density provided that TabT^{ab} is of third order. Our result extends the classical works of Cartan, Weyl, Vermeil, Lovelock, and Takens on identifying field equations for the metric tensor with the symmetries and conservation laws of the Einstein equations
    corecore