519 research outputs found
Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone
In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine β-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner.
SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator of actively cycling NSCs. Furthermore, we found that Notch3 is specifically expressed in qNSCs located in the lateral and ventral walls of the lateral ventricles and regulates neuronal production of NSCs in a region-specific manner. Our results indicate that Notch3, by maintaining the quiescence of a subpopulation of NSCs, confers a region-specific heterogeneity among NSCs in the adult SEZ
L’effet du vieillissement sur les cellules souches neurales adultes
La neurogenèse persiste à l’âge adulte dans deux régions du système nerveux central (SNC) des mammifères : la zone sous-ventriculaire (SVZ) du cerveau antérieur et la zone sous-granulaire (SGZ) de l’hippocampe. Cette neurogenèse est possible grâce à la capacité de prolifération des cellules souches présentes dans les niches de la SVZ et la SGZ, mais en vieillissant, le cerveau subit une diminution dramatique du nombre de cellules souches neurales adultes (CSNa), une diminution de la prolifération cellulaire et une altération des niches de neurogenèse. Cependant, une importante question reste sans réponse : comment la perte tardive des CSNa est temporellement reliée aux changements de l’activité de prolifération et de la structure de la principale niche de neurogenèse (la SVZ)? Afin d’avoir un aperçu sur les événements initiaux, nous avons examiné les changements des CSNa et de leur niche dans la SVZ entre le jeune âge et l’âge moyen. La niche de la SVZ des souris d’âge moyen (12 mois) subit une réduction de l’expression des marqueurs de plusieurs sous-populations de précurseurs neuraux en comparaison avec les souris jeunes adultes (2 mois). Anatomiquement, cela est associé avec des anomalies cytologiques, incluant une atrophie générale de la SVZ, une perte de la couche de cellules sousépendymaires par endroit et l’accumulation de gouttelettes lipidiques de grande taille dans l’épendyme. Fonctionnellement, ces changements sont corrélés avec une diminution de l’activité de la SVZ et une réduction du nombre de nouveaux neurones arrivant aux bulbes olfactifs. Pour déterminer si les CSNa de la SVZ ont subi des changements visibles, nous avons évalué les paramètres clés des CSNa in vivo et in vitro. La culture cellulaire montre qu’un nombre équivalent de CSNa ayant la capacité de former des neurosphères peut être isolé du cerveau du jeune adulte et d’âge moyen. Cependant, à l’âge moyen, les précurseurs neuraux semblent moins sensibles aux facteurs de croissance durant leur différenciation in vitro. Les CSNa donnent des signes de latence in vivo puisque leur capacité d’incorporation et de rétention du BrdU diminue. Ensemble, ces données démontrent que, tôt dans le processus du vieillissement, les CSNa et leur niche dans la SVZ subissent des changements significatifs, et suggèrent que la perte de CSNa liée au vieillissement est secondaire à ces événements.Neurogenesis persists throughout the adulthood in two regions of the mammalian central nervous system (SNC): the sub-ventricular zone (SVZ) of the forebrain and the sub-granular zone (SGZ) of the hippocampus. Neurogenesis is possible due to the proliferation capacity of stem cells present within both the SVZ and SGZ niches, but with aging, the forebrain undergoes a drastic reduction in its number of adult neural stem cells (aNSCs), a decrease of cell proliferation and an alteration of the neurogenic niches. However, a key unresolved question remains: how the onset of aNSC loss is temporally related to changes of proliferating activity and to structural alterations within the principal stem cell niche (the SVZ)? To gain insights into the initial events leading to aging-associated aNSC loss, we investigated the changes occurring to aNSCs and the SVZ niche between young adulthood and middle-age. The SVZ niche of middle-aged mice (12-months-old) was found to display reduced expression of markers for multiple neural precursor sub-populations when compared to young adult mice (2-months-old). Anatomically, this was associated with significant cytological aberrations, including an overall atrophy of the SVZ, loss of sub-ependymal cells, and accumulation of large lipid droplets within the ependyma. Functionally, these changes correlated with diminished SVZ activity and reduced number of newly born neurons reaching the principal target tissue: the olfactory bulbs. To determine whether changes were evident at the level of the SVZ stem cells, we evaluated key in vitro and in vivo parameters of aNSCs. Tissue culture experiments showed that equal numbers of neurosphere-forming aNSCs could be isolated from young adult and middle-aged forebrains. However, at middle-age, neural precursors seemed to be less sensitive to growth factors during their in vitro differentiation and displayed signs of increased quiescence in vivo. Collectively, these findings demonstrate that, with early aging, aNCS and their SVZ niche go through significant changes, and suggest that aging-associated aNSC loss is secondary to these events
Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception
Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem cell interface. Fewer inhibitory neurons form in the OB of EGFL7-knockout mice, which increases the absolute signal conducted from the mitral cell layer of the OB but decreases neuronal network synchronicity. Consequently, EGFL7-knockout mice display severe physiological defects in olfactory behaviour and perception
Caratterizzazione di cellule staminali adulte isolate da regione sottoventricolare (SVZ) di topi con mutazione vps54-L967Q (topi wobbler)
Il topo Wobbler (Wr) è portatore di una mutazione spontanea e recessiva in un gene che codifica per la “vesicular protein sorter 54” (Vps54), coinvolta nel traffico di membrana, e sviluppa una progressiva disfunzione motoria con perdita di motoneuroni e forte astrogliosi.
Lo scopo del mio progetto di tesi è stato quello di determinare se il complemento di cellule staminali neurali adulte (ANSCs)/ precursori cellulari neurali adulti (ANPCs) isolato da regione sottoventricolare (SVZ) di topi Wr, fosse alterato e determinare se cellule ottenute dal differenziamento di ANSCs/ANPCs Wr mostrassero caratteristiche tipiche della malattia.
ANSCs/ANPCs Wr sono capaci di generare neurosfere vitali e metabolicamente attive, di proliferare, di autorinnovarsi e sono multipotenti; tuttavia, la capacità proliferativa di ANSCs/ANPCs Wr è significativamente ridotta e la neurogenesi è aumentata rispetto ad ANSCs/ANPCs Ctr. Una sottopopolazione di astrociti fortemente immunoreattivi per la GFAP è maggiormente rappresentata nelle colture Wr. Gli astrociti Wr mostrano soma ipertrofico con processi cellulari corti e spessi ed esercitano un effetto neurotossico sulla sopravvivenza motoneuronale; tali alterazioni ricordano quelle osservate in colture primarie di astrociti Wr adulti.
In conclusione,il complemento di ANSCs/ANPCs Wr è alterato. Tali alterazioni potrebbero dipendere sia cambiamenti patologici nel microambiente circostante la nicchia subventricolare, sia dalla presenza della mutazione vps54
SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
Accuracy of trajectory reconstruction using a subset of cells. (a) Graph showing how similar the SLICER trajectory is when computed using a random subset of lung cells. The blue bars show the similarity in cell ordering (units are percent sorted with respect to the trajectory constructed from all cells). The orange bars show the similarity in branch assignments (percentage of cells assigned to the same branch as the trajectory constructed from all cells). The values shown were obtained by averaging the results from five subsampled datasets for each percentage (80 %, 60 %, 40 %, and 20 %). (b) Order preservation and branch identity values computed as in panel (a), but for datasets sampled from the neural stem cell dataset. (PDF 106 kb
Gene delivery to neural stem cells using minicircles and plasmids without CpG motifs
Tese de mestrado. Biologia (Biologia Celular e Biotecnologia). Universidade de Lisboa, Faculdade de Ciências, 2011Neural Stem Cells (NSC) are multipotent stem cells, capable of proliferating and differentiating in vivo and in vitro into astrocytes, oligodendrocytes and neurons. For this reason they hold a great potential for the development of gene and regenerative therapies for the treatment of neurodegenerative diseases and brain cancer. However, transfection of NSCs has proven to be difficult through conventional methods, and the disadvantages associated with the use of viral vectors make non-viral vectors more suitable for the development of gene delivery assays to NSCs. Apart from the non-viral method, one of the most important factors in gene delivery is the type of used vector. One of the factors that mostly affect the vector efficiency is the presence of CpG motifs. These motifs are responsible for the triggering of innate and acquired immune responses contributing to episomal silencing of the transgene. In this study, gene delivery to NSCs was optimized for the use of microporation technology and transfection efficiency was compared for the use of different transfection vectors with low vs. high CpG content, namely, minicircles, pCMV-GFP and pVAX-eGFP. The optimization of microporation conditions revealed that depending on the electroporation buffer, high number of transfected cells (60 to 75%) and low cell mortality (15-10%) are obtained when using 1500V, 20 ms and 1 pulse or 1800V, 20 ms and 1 pulse as microporation conditions. When comparing the transfection efficiency using different vectors it was evident that Minicircle was the vector that allowed the obtainment of sustained and higher number of transfected cells (75%) without affecting their survival (80-90% of cell viability) and morphology. The quantification of vector copies in the nuclei revealed that the optimal dose to transfect NSCs is around 0.8 μg, and that, although a similar number of Minicircle and pCMV-GFP copies per nucleus is found, the first are the vectors that yield the highest expression levels. Long term analysis also showed Minicircles are less degraded, exhibiting higher number of copies and GFP expression than pCMV-GFP or pVAX-eGFP. Finally, microporation did not seem to affect NSCs differentiation potential. Taken together, these results offer the first insights in the use of microporation and minicircles in non-viral transfection of NSCs, suggesting that microporation is a promising tool for NSCs transfection and that minicircles offer a new model of efficient and safe non-viral gene delivery to NSCs and have unquestionably a potential use for clinical applications and genetic engineering.Células estaminais representam um grupo específico de células indiferenciadas que apresentam a capacidade de se auto-renovar e de se diferenciar, quando estimuladas por determinadas condições, em células várias linhagens distintas. Existem dois tipos distintos de células estaminais: embrionárias e adultas. As células embrionárias apresentam a capacidade de se especificarem em vários tipos celulares no entanto, os problemas éticos muitas vezes associados com o seu isolamento e potencial cancerígeno, limitam o seu uso. Por este motivo, o interesse em células estaminais adultas, que apresentam apenas a capacidade de se especificar em tipos celulares provenientes do seu tecido de origem, tem vindo a aumentar exponencialmente. Células estaminais neurais (Neural stem cells – NSC) representam uma população de células que pode ser isolada a partir de tecido cerebral embrionário, fetal ou adulto. No cérebro em desenvolvimento estas células existem como progenitores neuroepiteliais que se diferenciam em vários progenitores neurais que vão dar origem aos três tipos celulares característicos do sistema nervoso, astrócitos, oligodendrócitos e neurónios. No sistema nervoso adulto, estas células representam uma população de astrócitos que têm a capacidade de se diferenciar em caso de infecção ou inflamação, e habitam nichos específicos na zona subventricular do prosencéfalo e na zona subgranular do hipocampo. A sua capacidade única de se diferenciarem em células do sistema nervoso e de, após enxerto, conseguirem ultrapassar a barreira hematoencefálica, faz com que estas células apresentem um elevado potencial para o desenvolvimento de terapias regenerativas e genéticas para o tratamento de doenças neurodegenerativas e de cancro do cérebro. Em cultura, estas células são aderentes ou formam complexos esféricos de progenitores neurais, apresentam a forma bipolar e expressam factores característicos de células neuronais, tais como nestina, Sox2 e Pax6, e astrogliais, tais como GFAP, GLAST, BLBP e RC2. A capacidade de diferenciação que estas células apresentam e o desenvolvimento de protocolos de diferenciação simples e eficazes fez com que as NSCs tenham sido alvo de diversos estudos de regeneração de tecidos e transferência de genes. Estudos recentes demonstraram que em caso de enxerto, as NSCs conseguem diferenciar-se em neurónios dopaminérgicos e substituir lesões em modelos de doença de Parkinson e conseguem reduzir o processo inflamatório em modelos de esclerose múltipla. Em termos de entrega de genes, os estudos efectuados demonstraram que as NSCs podem ser transfectadas e entregar genes terapêuticos que potenciam o melhoramento de várias doenças de foro neurológico. Um dos grandes problemas até agora tem sido o desenvolvimento de métodos de transfecção eficientes. Até muito recentemente, a transfecção de NSCs era basicamente feita através de métodos virais, no entanto os problemas patogénicos associados a estes vectores e a possibilidade de indução de mutagénese das células transfectadas fez com que a atenção dos cientistas divergisse para as metodologias não virais. Em comparação com as primeiras, estas metodologias oferecem uma série de vantagens, tais como, maior capacidade de empacotamento, menor imunogenicidade, fácil e maior segurança de manuseamento. A entrega de genes usando estes métodos pode ser feita através de tratamentos químicos, como partículas de fosfato de cálcio, biopolímeros biodegradáveis e liposomas catiónicos, e através de tratamentos físicos, tais como sonoporação, bombardeamento de partículas, magnetofecção, electroporação e microporação. Para além do método de transfecção, há que ter em atenção o tipo de vector usado. Após transfecção, os vectores têm que ultrapassar barreiras extra e intracelulares que causam silenciamento episomal do transgene. É por este motivo que têm sido desenvolvidos muitos trabalhos com o intuito de melhorar os vectores. Um dos factores que mais afecta a eficiência de um plasmídeo é o conteúdo deste em motivos CpG. Estes dinucleótidos não-metilados são característicos de genomas bacterianos e, se presentes em plasmídos, são reconhecidos pelo sistema imunitário de mamíferos, mais especificamente por células que expressam TLR9, despoletando reacções imunológicas inatas e secundárias que levam à degradação do vector e posterior silenciamento do transgene. Recentemente têm sido produzidos plasmídeos de conteúdo reduzido em motivos CpG que em relação aos pDNAs convencionais, apresentam eficiência e persistência melhoradas. Para além destes tipos de vectores, o desenvolvimento da tecnologia de minicirculos, que são pequenos vectores desprovidos de sequências bacterianas e de conteúdo CpG reduzido, permitiu um melhoramento de 10 a 10,000x das eficiências de transfecção em relação aos pDNAs convencionais. O objectivo principal deste estudo foi a optimização das condições de transfecção não viral de NSCs (CGR8-NSC) por microporação e a comparação das eficiencias de transfecção de NSCs quando transfectadas com minicirculos e pDNAs com conteúdo em motivos CpG reduzido ou mesmo inexistente. Neste estudo, foram feitas duas optimizações das condições de microporação para o uso de dois tampões de electroporação diferentes, o RB, um tampão de formulação desconhecida, e o HMB, um tampão preparado no laboratório e que já tinha sido utilizado para transfectar células HEK293T e células estaminais mesenquimatosas. A microporação com o tampão RB foi feita transfectando pVAX-eGFP e variando a voltagem (entre 1400 e 1600V), a duração do pulso (20 e 30 ms) e o número de pulsos (1 e 2). A condição que no geral demonstrou ser mais eficaz foi 1500V, 20 ms e 1 pulso (percentagem de células transfectadas ≈ 60%; viabilidade e recuperação celular 85-90%). A optimização com HMB foi feita microporando as NSCs com dois vectores diferentes (pVAX-eGFP e MC-GFP) e variando a voltagem entre 1600 e 1900V. Apesar de, com o aumento da voltagem se ter verificado, em ambos os casos, uma diminuição das viabilidades e recuperações celulares (mais acentuada em células transfectadas com pVAX-eGFP), no geral, a condição que obteve os melhores resultados, exibindo as percentagens de células transfectadas (50 e 75% com pVAX-eGFP e PC-GFP) e rendimentos de transfecção (47 e 69% com pVAX-eGFP e MC-GFP) mais elevadas foi 1800V, 20 ms e 1 pulso. Um outro ensaio de optimização foi efectuado para determinar a quantidade ideal de DNA para transfectar NSCs. Para isto, NSCs foram ressuspendidas em RB e transfectadas com várias quantidades de pVAx-eGFP (0.5, 0.8, 1.0 e 1.5 μg) usando 1500V, 20 ms e 1 pulso como condições de microporação. Apesar de o aumento de DNA não ter afectado a percentagem de células GFP+ (≈50%) e de ter provocado uma diminuição das viabilidades e recuperações celulares, 0.8 μg foi a quantidade de pDNA que exibiu o maior rendimento de transfecção (≈40%), tendo sido por isso considerada a quantidade ideal de vector para transfectar NSCs. Para testar a eficiência de transfecção de minicirculos e outros pDNAs com conteúdo reduzido ou inexistente em CpGs as NSCs foram transfectadas com 2.0 x 1011 moléculas de cada vector. A transfecção com plasmídeos sem motivos CpG (pCpGfree-eGFP) revelou-se muito aquém do esperado, e quando comparando com NSCs transfectadas com pVAX-eGFP, a percentagem de células GFP+ era menor e o decaimento da expressão do transgene ao longo do tempo mais rápido em células transfectadas com pCpG-eGFP, indicando que talvez, o promotor deste plasmídeo não seja tão eficiente como o do pVAX-eGFP. Comparando células transfectadas com minicirculos (MC-GFP) com outros pDNAs (pCMV-GFP – plasmídeo correspondente de MC-GFP, e pVAX-eGFP) verificou-se que usando MC-GFP é possível manter elevados níveis de células transfectadas (≈75%) sem comprometer a viabilidade celular (80-90%) e a morfologia bipolar característica das NSCs em cultura. Adicionalmente, a expressão do gene mantém-se mais alta com MC-GFP ao longo de 10 dias e não afecta a proliferação celular. Testes adicionais foram efectuados para quantificar o número de cópias de vector no núcleo de NSCs transfectadas. Em estudos anteriores tinha-se verificado que há uma certa dose de plasmídeo a partir do qual a expressão do transgene satura. Em NSCs verificou-se que, independente do vector, a partir de 0.8 μg há uma estabilização e posterior decaimento da expressão da GFP, e, quando comparando o número de cópias de cada vector no núcleo, verificou-se que apesar da quantidade de MC-GFP e pCMV-GFP ser semelhante, o nível de expressão do primeiro era mais elevado. Adicionalmente, a análise ao longo de 10 dias da quantidade de cópias do núcleo revelou que o MC-GFP era o vector que se encontrava em maior quantidade no núcleo e o que revelava maiores níveis de expressão do transgene, indicando que este, devido ao seu menor tamanho e conteúdo CpG mais reduzido (≈6%) é menos degradado que os outros plasmídeos. Em comparação, os resultados com pCMV-GFP e pVAX-eGFP, que apresentam conteúdo semelhante em motivos CpG (≈7%), diferem muito entre si, apresentando o pCMV-GFP eficiências e viabilidades celulares mais elevadas. Este facto é difícil de ser explicado mas há três diferenças entre estes dois plasmideos que podem justificar esses valores: i) diferente sinal de poliadenilação dos dois plasmídeos (pVAX-eGFP apresenta o sinal BGH e o pCMV-GFP apresenta o sinal SV40), que como estudos anteriores já demonstraram pode influenciar os níveis de expressão, ii) diferenças na sequência do gene reporter que pode originar uma proteína com maior ou menor intensidade de fluorescência; iii) ou ao nível de purificação de cada plasmídeo. Finalmente, nem o uso de microporação nem a transfecção com plasmídeo afectou a capacidade de diferenciação das NSCs em neurónios. Comparando os resultados obtidos é possível concluir que o uso de microporação como método de transfecção de NSCs dá origem a elevadas eficiências de transfecção. Em comparação com os outros pDNAs, os Minicirculos foram os vectores que demonstraram as melhores eficiências de transfecção e os maiores níveis de expressão do transgene sem comprometer a morfologia e a viabilidade das células. Pode-se concluir que o tamanho destes vectores e que a diferença e 1% no conteúdo em motivos CpG é suficiente para que o silenciamento episomal do transgene seja mais fraco com MC-GFP. Como trabalho futuro, seria interessante avaliar a expressão de TLR9 em NSCs após transfecção para verificar se há realmente silenciamento devido aos motivos CpG e quantificar o RNA mensageiro para avaliar a estabilidade e frequência do transgene. Seria também muito benéfico avaliar a eficiência dos minicirculos através de transfecção por outros métodos não virais, tais como, lipofecção ou magnetofecção, e efectuar estudos in vivo para avaliar o tráfico intracelular de minicirculos, e também clonar um gene de interesse nos minicirculos para avaliar o seu potencial no desenvolvimento de futuras terapias para doenças de foro neurológico. Até à data, ainda não tinham sido efectuados estudos de transfecção em NSCs usando microporação ou minicirculos. Este trabalho representa a primeira perspectiva para o uso destas tecnologias para a transfecção destas células e indica que os minicirculos representam um novo modelo eficiente e seguro de entrega não viral de genes para NSCs e uma alternativa muito promissora para o desenvolvimento de terapias para o tratamento de doenças neurodegenerativas ou cancro do cérebro onde uma expressão transiente de transgene pode ser necessária
Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells
Human pluripotent stem cells (hPSCs) are of great interest in biology and medicine due to their ability to self-renew and differentiate into any adult or fetal cell type. Important efforts have identified biochemical factors, signaling pathways, and transcriptional networks that regulate hPSC biology. However, recent work investigating the effect of biophysical cues on mammalian cells and adult stem cells suggests that the mechanical properties of the microenvironment, such as stiffness, may also regulate hPSC behavior. While several studies have explored this mechanoregulation in mouse embryonic stem cells (mESCs), it has been challenging to extrapolate these findings and thereby explore their biomedical implications in hPSCs. For example, it remains unclear whether hPSCs can be driven down a given tissue lineage by providing tissue-mimetic stiffness cues. Here we address this open question by investigating the regulation of hPSC neurogenesis by microenvironmental stiffness. We find that increasing extracellular matrix (ECM) stiffness in vitro increases hPSC cell and colony spread area but does not alter self-renewal, in contrast to past studies with mESCs. However, softer ECMs with stiffnesses similar to that of neural tissue promote the generation of early neural ectoderm. This mechanosensitive increase in neural ectoderm requires only a short 5-day soft stiffness “pulse,” which translates into downstream increases in both total neurons as well as therapeutically relevant dopaminergic neurons. These findings further highlight important differences between mESCs and hPSCs and have implications for both the design of future biomaterials as well as our understanding of early embryonic development
- …
