188,724 research outputs found

    Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors.

    Get PDF
    Plants, similarly to animals, form polarized axes during embryogenesis on which cell differentiation and organ patterning programs are orchestrated. During Arabidopsis embryogenesis, establishment of the shoot and root stem cell populations occurs at opposite ends of an apical-basal axis. Recent work has identified the PLETHORA (PLT) genes as master regulators of basal/root fate, whereas the master regulators of apical/shoot fate have remained elusive. Here we show that the PLT1 and PLT2 genes are direct targets of the transcriptional co-repressor TOPLESS (TPL) and that PLT1/2 are necessary for the homeotic conversion of shoots to roots in tpl-1 mutants. Using tpl-1 as a genetic tool, we identify the CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors as master regulators of embryonic apical fate, and show they are sufficient to drive the conversion of the embryonic root pole into a second shoot pole. Furthermore, genetic and misexpression studies show an antagonistic relationship between the PLT and HD-ZIP III genes in specifying the root and shoot poles

    Evolutionary descent of prion genes from a ZIP metal ion transport ancestor

    Get PDF
    In the more than 20 years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into the function of PrP may be obtained through a characterization of its molecular neighborhood. Quantitative interactome data revealed the spatial proximity of a subset of metal ion transporters of the ZIP family to mammalian prion proteins. A subsequent bioinformatic analysis revealed the presence of a prion-like protein sequence within the N-terminal, extracellular domain of a phylogenetic branch of ZIPs. Additional structural threading and ortholog sequence alignment analyses consolidated the conclusion that the prion protein gene family is phylogenetically derived from a ZIP-like ancestor molecule. Our data explain structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The connection to ZIP proteins is expected to open new avenues to elucidate the biology of the prion protein in health and disease

    Modeling the International-Trade Network: A Gravity Approach

    Full text link
    This paper investigates whether the gravity model (GM) can explain the statistical properties of the International Trade Network (ITN). We fit data on international-trade flows with a GM specification using alternative fitting techniques and we employ GM estimates to build a weighted predicted ITN, whose topological properties are compared to observed ones. Furthermore, we propose an estimation strategy to predict the binary ITN with a GM. We find that the GM successfully replicates the weighted-network structure of the ITN, only if one fixes its binary architecture equal to the observed one. Conversely, the GM performs very badly when asked to predict the presence of a link, or the level of the trade flow it carries, whenever the binary structure must be simultaneously estimated

    Zipper logic

    Full text link
    Zipper logic is a graph rewrite system, consisting in only local rewrites on a class of zipper graphs. Connections with the chemlambda artificial chemistry and with knot diagrammatics based computation are explored in the article.Comment: 16 pages, 24 colour figure

    c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells.

    Get PDF
    ObjectiveADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis.DesignPromoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences.ResultsIn vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61.ConclusionsThese data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter

    A Community\u27s Collective Courage: A Local Food Cooperative\u27s Impact on Food Insecurity, Community and Economic Development, and Local Food Systems

    Get PDF
    According to the USDA’s “Food Security Status of U.S. Households” in 2014, 48.1 million people live in food insecure households. In Indiana, more than 1 million people suffer from food insecurity with rates as high as 19.2% of Marion County’s population according to the Map the Meal Gap 2014 report. The Community Controlled Food Initiative (CCFI) is a local food cooperative operated by the Kheprw Institute and neighborhood residents in the Mid-North Indianapolis Community. The cooperative formed to address food insecurity in August 2015 in response to the closing on the local Double 8 Foods grocery stores. CCFI hosts a monthly food share distribution where residents buy into the program and receive a share of locally sourced fruits and vegetables. The cooperative model is a long tradition of people coming together to address a need in their community or society through a communal business structure. The community lived with food insecurity long before the closing of the grocery stores and decided to take action. This research is a case study using participatory observation testing CCFI’s cooperative model to Jessica Nemhard’s research in Collective Courage: An African American Cooperative History and through the three pillars of impact: addressing food insecurity, community and economic development, and climate change. CCFI’s work shows that food is not only a necessity for life, but also a catalyst for social change
    corecore