4 research outputs found

    New results on Gimli: full-permutation distinguishers and improved collisions

    Get PDF
    International audienceGimli is a family of cryptographic primitives (both a hash function and an AEAD scheme) that has been selected for the second round of the NIST competition for standardizing new lightweight designs. The candidate Gimli is based on the permutation Gimli, which was presented at CHES 2017. In this paper, we study the security of both the permutation and the constructions that are based on it. We exploit the slow diffusion in Gimli and its internal symmetries to build, for the first time, a distinguisher on the full permutation of complexity 2 64. We also provide a practical distinguisher on 23 out of the full 24 rounds of Gimli that has been implemented. Next, we give (full state) collision and semi-free-start collision attacks on Gimli-Hash, reaching respectively up to 12 and 18 rounds. On the practical side, we compute a collision on 8-round Gimli-Hash. In the quantum setting, these attacks reach 2 more rounds. Finally, we perform the first study of linear trails in the permutation, and we propose differential-linear cryptanalysis that reach up to 17 rounds of Gimli

    Internal symmetries and linear properties: Full-permutation distinguishers and improved collisions on Gimli

    Get PDF
    Gimli is a family of cryptographic primitives (both a hash function and an AEAD scheme) that has been selected for the second round of the NIST competition for standardizing new lightweight designs. The candidate Gimli is based on the permutation Gimli, which was presented at CHES 2017. In this paper, we study the security of both the permutation and the constructions that are based on it. We exploit the slow diffusion in Gimli and its internal symmetries to build, for the first time, a distinguisher on the full permutation of complexity 2^64. We also provide a practical distinguisher on 23 out of the full 24 rounds of Gimli that has been implemented. Next, we give (full state) collision and semi-free start collision attacks on Gimli-Hash, reaching, respectively, up to 12 and 18 rounds. On the practical side, we compute a collision on 8-round Gimli-Hash. In the quantum setting, these attacks reach 2 more rounds. Finally, we perform the first study of linear trails in Gimli, and we find a linear distinguisher on the full permutation

    Internal Symmetries and Linear Properties: Full-permutation Distinguishers and Improved Collisions on Gimli

    Get PDF
    International audienceGimli is a family of cryptographic primitives (both a hash function and an AEAD scheme) that has been selected for the second round of the NIST competition for standardizing new lightweight designs. The candidate Gimli is based on the permutation Gimli, which was presented at CHES 2017. In this paper, we study the security of both the permutation and the constructions that are based on it. We exploit the slow diffusion in Gimli and its internal symmetries to build, for the first time, a distinguisher on the full permutation of complexity 2 64. We also provide a practical distinguisher on 23 out of the full 24 rounds of Gimli that has been implemented. Next, we give (full state) collision and semi-free-start collision attacks on Gimli-Hash, reaching respectively up to 12 and 18 rounds. On the practical side, we compute a collision on 8-round Gimli-Hash. In the quantum setting, these attacks reach 2 more rounds. Finally, we perform the first study of linear trails in Gimli, and we find a linear distinguisher on the full permutation

    Algorithmes quantiques pour la cryptanalyse et cryptographie symétrique post-quantique

    Get PDF
    Modern cryptography relies on the notion of computational security. The level of security given by a cryptosystem is expressed as an amount of computational resources required to break it. The goal of cryptanalysis is to find attacks, that is, algorithms with lower complexities than the conjectural bounds.With the advent of quantum computing devices, these levels of security have to be updated to take a whole new notion of algorithms into account. At the same time, cryptography is becoming widely used in small devices (smart cards, sensors), with new cost constraints.In this thesis, we study the security of secret-key cryptosystems against quantum adversaries.We first build new quantum algorithms for k-list (k-XOR or k-SUM) problems, by composing exhaustive search procedures. Next, we present dedicated cryptanalysis results, starting with a new quantum cryptanalysis tool, the offline Simon's algorithm. We describe new attacks against the lightweight algorithms Spook and Gimli and we perform the first quantum security analysis of the standard cipher AES.Finally, we specify Saturnin, a family of lightweight cryptosystems oriented towards post-quantum security. Thanks to a very similar structure, its security relies largely on the analysis of AES.La cryptographie moderne est fondée sur la notion de sécurité computationnelle. Les niveaux de sécurité attendus des cryptosystèmes sont exprimés en nombre d'opérations ; une attaque est un algorithme d'une complexité inférieure à la borne attendue. Mais ces niveaux de sécurité doivent aujourd'hui prendre en compte une nouvelle notion d'algorithme : le paradigme du calcul quantique. Dans le même temps,la délégation grandissante du chiffrement à des puces RFID, objets connectés ou matériels embarqués pose de nouvelles contraintes de coût.Dans cette thèse, nous étudions la sécurité des cryptosystèmes à clé secrète face à un adversaire quantique.Nous introduisons tout d'abord de nouveaux algorithmes quantiques pour les problèmes génériques de k-listes (k-XOR ou k-SUM), construits en composant des procédures de recherche exhaustive.Nous présentons ensuite des résultats de cryptanalyse dédiée, en commençant par un nouvel outil de cryptanalyse quantique, l'algorithme de Simon hors-ligne. Nous décrivons de nouvelles attaques contre les algorithmes Spook et Gimli et nous effectuons la première étude de sécurité quantique du chiffrement AES. Dans un troisième temps, nous spécifions Saturnin, une famille de cryptosystèmes à bas coût orientés vers la sécurité post-quantique. La structure de Saturnin est proche de celle de l'AES et sa sécurité en tire largement parti
    corecore