2,930 research outputs found

    Zero-shot Deep Reinforcement Learning Driving Policy Transfer for Autonomous Vehicles based on Robust Control

    Full text link
    Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training) domain and the target (deployment) domain. Unlike current policy transfer approaches, which generally limit to the usage of uninterpretable neural network representations as the transferred features, we propose to transfer concrete kinematic quantities in autonomous driving. The proposed robust-control-based (RC) generic transfer architecture, which we call RL-RC, incorporates a transferable hierarchical RL trajectory planner and a robust tracking controller based on disturbance observer (DOB). The deep RL policies trained with known nominal dynamics model are transfered directly to the target domain, DOB-based robust tracking control is applied to tackle the modeling gap including the vehicle dynamics errors and the external disturbances such as side forces. We provide simulations validating the capability of the proposed method to achieve zero-shot transfer across multiple driving scenarios such as lane keeping, lane changing and obstacle avoidance.Comment: Published at IEEE ITSC 201

    Exploration Without Maps via Zero-Shot Out-of-Distribution Deep Reinforcement Learning

    Full text link
    Operation of Autonomous Mobile Robots (AMRs) of all forms that include wheeled ground vehicles, quadrupeds and humanoids in dynamically changing GPS denied environments without a-priori maps, exclusively using onboard sensors, is an unsolved problem that has potential to transform the economy, and vastly improve humanity's capabilities with improvements to agriculture, manufacturing, disaster response, military and space exploration. Conventional AMR automation approaches are modularized into perception, motion planning and control which is computationally inefficient, and requires explicit feature extraction and engineering, that inhibits generalization, and deployment at scale. Few works have focused on real-world end-to-end approaches that directly map sensor inputs to control outputs due to the large amount of well curated training data required for supervised Deep Learning (DL) which is time consuming and labor intensive to collect and label, and sample inefficiency and challenges to bridging the simulation to reality gap using Deep Reinforcement Learning (DRL). This paper presents a novel method to efficiently train DRL for robust end-to-end AMR exploration, in a constrained environment at physical limits in simulation, transferred zero-shot to the real-world. The representation learned in a compact parameter space with 2 fully connected layers with 64 nodes each is demonstrated to exhibit emergent behavior for out-of-distribution generalization to navigation in new environments that include unstructured terrain without maps, and dynamic obstacle avoidance. The learned policy outperforms conventional navigation algorithms while consuming a fraction of the computation resources, enabling execution on a range of AMR forms with varying embedded computer payloads

    Reinforcement Learning from Simulation to Real World Autonomous Driving using Digital Twin

    Full text link
    Reinforcement learning (RL) is a promising solution for autonomous vehicles to deal with complex and uncertain traffic environments. The RL training process is however expensive, unsafe, and time consuming. Algorithms are often developed first in simulation and then transferred to the real world, leading to a common sim2real challenge that performance decreases when the domain changes. In this paper, we propose a transfer learning process to minimize the gap by exploiting digital twin technology, relying on a systematic and simultaneous combination of virtual and real world data coming from vehicle dynamics and traffic scenarios. The model and testing environment are evolved from model, hardware to vehicle in the loop and proving ground testing stages, similar to standard development cycle in automotive industry. In particular, we also integrate other transfer learning techniques such as domain randomization and adaptation in each stage. The simulation and real data are gradually incorporated to accelerate and make the transfer learning process more robust. The proposed RL methodology is applied to develop a path following steering controller for an autonomous electric vehicle. After learning and deploying the real-time RL control policy on the vehicle, we obtained satisfactory and safe control performance already from the first deployment, demonstrating the advantages of the proposed digital twin based learning process.Comment: This work has been submitted to IFAC for possible publicatio

    Zero-Shot Autonomous Vehicle Policy Transfer: From Simulation to Real-World via Adversarial Learning

    Full text link
    In this article, we demonstrate a zero-shot transfer of an autonomous driving policy from simulation to University of Delaware's scaled smart city with adversarial multi-agent reinforcement learning, in which an adversary attempts to decrease the net reward by perturbing both the inputs and outputs of the autonomous vehicles during training. We train the autonomous vehicles to coordinate with each other while crossing a roundabout in the presence of an adversary in simulation. The adversarial policy successfully reproduces the simulated behavior and incidentally outperforms, in terms of travel time, both a human-driving baseline and adversary-free trained policies. Finally, we demonstrate that the addition of adversarial training considerably improves the performance \eat{stability and robustness} of the policies after transfer to the real world compared to Gaussian noise injection.Comment: 6 pages, 4 figure
    • …
    corecore