69,626 research outputs found

    Preattentive texture discrimination with early vision mechanisms

    Get PDF
    We present a model of human preattentive texture perception. This model consists of three stages: (1) convolution of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural-response profiles that results in the suppression of weak responses when there are strong responses at the same or nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of the degree of discriminability of different texture pairs match well with experimental measurements of discriminability in human observers

    Time Domain Computation of a Nonlinear Nonlocal Cochlear Model with Applications to Multitone Interaction in Hearing

    Full text link
    A nonlinear nonlocal cochlear model of the transmission line type is studied in order to capture the multitone interactions and resulting tonal suppression effects. The model can serve as a module for voice signal processing, it is a one dimensional (in space) damped dispersive nonlinear PDE based on mechanics and phenomenology of hearing. It describes the motion of basilar membrane (BM) in the cochlea driven by input pressure waves. Both elastic damping and selective longitudinal fluid damping are present. The former is nonlinear and nonlocal in BM displacement, and plays a key role in capturing tonal interactions. The latter is active only near the exit boundary (helicotrema), and is built in to damp out the remaining long waves. The initial boundary value problem is numerically solved with a semi-implicit second order finite difference method. Solutions reach a multi-frequency quasi-steady state. Numerical results are shown on two tone suppression from both high-frequency and low-frequency sides, consistent with known behavior of two tone suppression. Suppression effects among three tones are demonstrated by showing how the response magnitudes of the fixed two tones are reduced as we vary the third tone in frequency and amplitude. We observe qualitative agreement of our model solutions with existing cat auditory neural data. The model is thus simple and efficient as a processing tool for voice signals.Comment: 23 pages,7 figures; added reference

    D-brane Instantons in Type II String Theory

    Full text link
    We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.Comment: Invited review to appear in Annu.Rev.Nuc.Part.Sci 2009 59; 69 pages, 8 figures, 5 tables; v2: 1 reference adde

    Progress in Electroweak Baryogenesis

    Full text link
    Recent work on generating the excess of matter over antimatter in the early universe during the electroweak phase transition is reviewed.Comment: 50 pages (figures on request), uses harvmac (table of contents correct for "l" format), UCSD-93-2,BU-HEP-93-
    corecore