863 research outputs found

    Aligned Image-Word Representations Improve Inductive Transfer Across Vision-Language Tasks

    Full text link
    An important goal of computer vision is to build systems that learn visual representations over time that can be applied to many tasks. In this paper, we investigate a vision-language embedding as a core representation and show that it leads to better cross-task transfer than standard multi-task learning. In particular, the task of visual recognition is aligned to the task of visual question answering by forcing each to use the same word-region embeddings. We show this leads to greater inductive transfer from recognition to VQA than standard multitask learning. Visual recognition also improves, especially for categories that have relatively few recognition training labels but appear often in the VQA setting. Thus, our paper takes a small step towards creating more general vision systems by showing the benefit of interpretable, flexible, and trainable core representations.Comment: Accepted in ICCV 2017. The arxiv version has an extra analysis on correlation with human attentio

    An Empirical Evaluation of Visual Question Answering for Novel Objects

    Full text link
    We study the problem of answering questions about images in the harder setting, where the test questions and corresponding images contain novel objects, which were not queried about in the training data. Such setting is inevitable in real world-owing to the heavy tailed distribution of the visual categories, there would be some objects which would not be annotated in the train set. We show that the performance of two popular existing methods drop significantly (up to 28%) when evaluated on novel objects cf. known objects. We propose methods which use large existing external corpora of (i) unlabeled text, i.e. books, and (ii) images tagged with classes, to achieve novel object based visual question answering. We do systematic empirical studies, for both an oracle case where the novel objects are known textually, as well as a fully automatic case without any explicit knowledge of the novel objects, but with the minimal assumption that the novel objects are semantically related to the existing objects in training. The proposed methods for novel object based visual question answering are modular and can potentially be used with many visual question answering architectures. We show consistent improvements with the two popular architectures and give qualitative analysis of the cases where the model does well and of those where it fails to bring improvements.Comment: 11 pages, 4 figures, accepted in CVPR 2017 (poster

    Don't Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering

    Full text link
    A number of studies have found that today's Visual Question Answering (VQA) models are heavily driven by superficial correlations in the training data and lack sufficient image grounding. To encourage development of models geared towards the latter, we propose a new setting for VQA where for every question type, train and test sets have different prior distributions of answers. Specifically, we present new splits of the VQA v1 and VQA v2 datasets, which we call Visual Question Answering under Changing Priors (VQA-CP v1 and VQA-CP v2 respectively). First, we evaluate several existing VQA models under this new setting and show that their performance degrades significantly compared to the original VQA setting. Second, we propose a novel Grounded Visual Question Answering model (GVQA) that contains inductive biases and restrictions in the architecture specifically designed to prevent the model from 'cheating' by primarily relying on priors in the training data. Specifically, GVQA explicitly disentangles the recognition of visual concepts present in the image from the identification of plausible answer space for a given question, enabling the model to more robustly generalize across different distributions of answers. GVQA is built off an existing VQA model -- Stacked Attention Networks (SAN). Our experiments demonstrate that GVQA significantly outperforms SAN on both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it also outperforms more powerful VQA models such as Multimodal Compact Bilinear Pooling (MCB) in several cases. GVQA offers strengths complementary to SAN when trained and evaluated on the original VQA v1 and VQA v2 datasets. Finally, GVQA is more transparent and interpretable than existing VQA models.Comment: 15 pages, 10 figures. To appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Delving Deeper into Cross-lingual Visual Question Answering

    Full text link
    Visual question answering (VQA) is one of the crucial vision-and-language tasks. Yet, existing VQA research has mostly focused on the English language, due to a lack of suitable evaluation resources. Previous work on cross-lingual VQA has reported poor zero-shot transfer performance of current multilingual multimodal Transformers with large gaps to monolingual performance, without any deeper analysis. In this work, we delve deeper into the different aspects of cross-lingual VQA, aiming to understand the impact of 1) modeling methods and choices, including architecture, inductive bias, fine-tuning; 2) learning biases: including question types and modality biases in cross-lingual setups. The key results of our analysis are: 1) We show that simple modifications to the standard training setup can substantially reduce the transfer gap to monolingual English performance, yielding +10 accuracy points over existing methods. 2) We analyze cross-lingual VQA across different question types of varying complexity for different multilingual multimodal Transformers, and identify question types that are the most difficult to improve on. 3) We provide an analysis of modality biases present in training data and models, revealing why zero-shot performance gaps remain for certain question types and languages.Comment: Findings of EACL 202
    • …
    corecore