26 research outputs found

    ADAPTERMIX: Exploring the Efficacy of Mixture of Adapters for Low-Resource TTS Adaptation

    Full text link
    There are significant challenges for speaker adaptation in text-to-speech for languages that are not widely spoken or for speakers with accents or dialects that are not well-represented in the training data. To address this issue, we propose the use of the "mixture of adapters" method. This approach involves adding multiple adapters within a backbone-model layer to learn the unique characteristics of different speakers. Our approach outperforms the baseline, with a noticeable improvement of 5% observed in speaker preference tests when using only one minute of data for each new speaker. Moreover, following the adapter paradigm, we fine-tune only the adapter parameters (11% of the total model parameters). This is a significant achievement in parameter-efficient speaker adaptation, and one of the first models of its kind. Overall, our proposed approach offers a promising solution to the speech synthesis techniques, particularly for adapting to speakers from diverse backgrounds.Comment: Interspeech 202

    VoiceLens: Controllable Speaker Generation and Editing with Flow

    Full text link
    Currently, many multi-speaker speech synthesis and voice conversion systems address speaker variations with an embedding vector. Modeling it directly allows new voices outside of training data to be synthesized. GMM based approaches such as Tacospawn are favored in literature for this generation task, but there are still some limitations when difficult conditionings are involved. In this paper, we propose VoiceLens, a semi-supervised flow-based approach, to model speaker embedding distributions for multi-conditional speaker generation. VoiceLens maps speaker embeddings into a combination of independent attributes and residual information. It allows new voices associated with certain attributes to be \textit{generated} for existing TTS models, and attributes of known voices to be meaningfully \textit{edited}. We show in this paper, VoiceLens displays an unconditional generation capacity that is similar to Tacospawn while obtaining higher controllability and flexibility when used in a conditional manner. In addition, we show synthesizing less noisy speech from known noisy speakers without re-training the TTS model is possible via solely editing their embeddings with a SNR conditioned VoiceLens model. Demos are available at sos1sos2sixteen.github.io/voicelens

    Generalizable Zero-Shot Speaker Adaptive Speech Synthesis with Disentangled Representations

    Full text link
    While most research into speech synthesis has focused on synthesizing high-quality speech for in-dataset speakers, an equally essential yet unsolved problem is synthesizing speech for unseen speakers who are out-of-dataset with limited reference data, i.e., speaker adaptive speech synthesis. Many studies have proposed zero-shot speaker adaptive text-to-speech and voice conversion approaches aimed at this task. However, most current approaches suffer from the degradation of naturalness and speaker similarity when synthesizing speech for unseen speakers (i.e., speakers not in the training dataset) due to the poor generalizability of the model in out-of-distribution data. To address this problem, we propose GZS-TV, a generalizable zero-shot speaker adaptive text-to-speech and voice conversion model. GZS-TV introduces disentangled representation learning for both speaker embedding extraction and timbre transformation to improve model generalization and leverages the representation learning capability of the variational autoencoder to enhance the speaker encoder. Our experiments demonstrate that GZS-TV reduces performance degradation on unseen speakers and outperforms all baseline models in multiple datasets.Comment: 5 pages, 3 figures. Accepted by Interspeech 2023, Ora
    corecore