3 research outputs found

    Interaction-Aware Multi-Agent Reinforcement Learning for Mobile Agents with Individual Goals

    Full text link
    In a multi-agent setting, the optimal policy of a single agent is largely dependent on the behavior of other agents. We investigate the problem of multi-agent reinforcement learning, focusing on decentralized learning in non-stationary domains for mobile robot navigation. We identify a cause for the difficulty in training non-stationary policies: mutual adaptation to sub-optimal behaviors, and we use this to motivate a curriculum-based strategy for learning interactive policies. The curriculum has two stages. First, the agent leverages policy gradient algorithms to learn a policy that is capable of achieving multiple goals. Second, the agent learns a modifier policy to learn how to interact with other agents in a multi-agent setting. We evaluated our approach on both an autonomous driving lane-change domain and a robot navigation domain

    Experience Reuse with Probabilistic Movement Primitives

    Full text link
    Acquiring new robot motor skills is cumbersome, as learning a skill from scratch and without prior knowledge requires the exploration of a large space of motor configurations. Accordingly, for learning a new task, time could be saved by restricting the parameter search space by initializing it with the solution of a similar task. We present a framework which is able of such knowledge transfer from already learned movement skills to a new learning task. The framework combines probabilistic movement primitives with descriptions of their effects for skill representation. New skills are first initialized with parameters inferred from related movement primitives and thereafter adapted to the new task through relative entropy policy search. We compare two different transfer approaches to initialize the search space distribution with data of known skills with a similar effect. We show the different benefits of the two knowledge transfer approaches on an object pushing task for a simulated 3-DOF robot. We can show that the quality of the learned skills improves and the required iterations to learn a new task can be reduced by more than 60% when past experiences are utilized.Comment: 8 pages, 5 figures, IROS 201

    A survey of benchmarking frameworks for reinforcement learning

    Full text link
    Reinforcement learning has recently experienced increased prominence in the machine learning community. There are many approaches to solving reinforcement learning problems with new techniques developed constantly. When solving problems using reinforcement learning, there are various difficult challenges to overcome. To ensure progress in the field, benchmarks are important for testing new algorithms and comparing with other approaches. The reproducibility of results for fair comparison is therefore vital in ensuring that improvements are accurately judged. This paper provides an overview of different contributions to reinforcement learning benchmarking and discusses how they can assist researchers to address the challenges facing reinforcement learning. The contributions discussed are the most used and recent in the literature. The paper discusses the contributions in terms of implementation, tasks and provided algorithm implementations with benchmarks. The survey aims to bring attention to the wide range of reinforcement learning benchmarking tasks available and to encourage research to take place in a standardised manner. Additionally, this survey acts as an overview for researchers not familiar with the different tasks that can be used to develop and test new reinforcement learning algorithms
    corecore