22,818 research outputs found

    On (n,m)(n,m)-chromatic numbers of graphs having bounded sparsity parameters

    Full text link
    An (n,m)(n,m)-graph is characterised by having nn types of arcs and mm types of edges. A homomorphism of an (n,m)(n,m)-graph GG to an (n,m)(n,m)-graph HH, is a vertex mapping that preserves adjacency, direction, and type. The (n,m)(n,m)-chromatic number of GG, denoted by χn,m(G)\chi_{n,m}(G), is the minimum value of V(H)|V(H)| such that there exists a homomorphism of GG to HH. The theory of homomorphisms of (n,m)(n,m)-graphs have connections with graph theoretic concepts like harmonious coloring, nowhere-zero flows; with other mathematical topics like binary predicate logic, Coxeter groups; and has application to the Query Evaluation Problem (QEP) in graph database. In this article, we show that the arboricity of GG is bounded by a function of χn,m(G)\chi_{n,m}(G) but not the other way around. Additionally, we show that the acyclic chromatic number of GG is bounded by a function of χn,m(G)\chi_{n,m}(G), a result already known in the reverse direction. Furthermore, we prove that the (n,m)(n,m)-chromatic number for the family of graphs with a maximum average degree less than 2+24(2n+m)12+ \frac{2}{4(2n+m)-1}, including the subfamily of planar graphs with girth at least 8(2n+m)8(2n+m), equals 2(2n+m)+12(2n+m)+1. This improves upon previous findings, which proved the (n,m)(n,m)-chromatic number for planar graphs with girth at least 10(2n+m)410(2n+m)-4 is 2(2n+m)+12(2n+m)+1. It is established that the (n,m)(n,m)-chromatic number for the family T2\mathcal{T}_2 of partial 22-trees is both bounded below and above by quadratic functions of (2n+m)(2n+m), with the lower bound being tight when (2n+m)=2(2n+m)=2. We prove 14χ(0,3)(T2)1514 \leq \chi_{(0,3)}(\mathcal{T}_2) \leq 15 and 14χ(1,1)(T2)2114 \leq \chi_{(1,1)}(\mathcal{T}_2) \leq 21 which improves both known lower bounds and the former upper bound. Moreover, for the latter upper bound, to the best of our knowledge we provide the first theoretical proof.Comment: 18 page

    T=0 Partition Functions for Potts Antiferromagnets on Lattice Strips with Fully Periodic Boundary Conditions

    Full text link
    We present exact calculations of the zero-temperature partition function for the qq-state Potts antiferromagnet (equivalently, the chromatic polynomial) for families of arbitrarily long strip graphs of the square and triangular lattices with width Ly=4L_y=4 and boundary conditions that are doubly periodic or doubly periodic with reversed orientation (i.e. of torus or Klein bottle type). These boundary conditions have the advantage of removing edge effects. In the limit of infinite length, we calculate the exponent of the entropy, W(q)W(q) and determine the continuous locus B{\cal B} where it is singular. We also give results for toroidal strips involving ``crossing subgraphs''; these make possible a unified treatment of torus and Klein bottle boundary conditions and enable us to prove that for a given strip, the locus B{\cal B} is the same for these boundary conditions.Comment: 43 pages, latex, 4 postscript figure

    Bulk, surface and corner free energy series for the chromatic polynomial on the square and triangular lattices

    Full text link
    We present an efficient algorithm for computing the partition function of the q-colouring problem (chromatic polynomial) on regular two-dimensional lattice strips. Our construction involves writing the transfer matrix as a product of sparse matrices, each of dimension ~ 3^m, where m is the number of lattice spacings across the strip. As a specific application, we obtain the large-q series of the bulk, surface and corner free energies of the chromatic polynomial. This extends the existing series for the square lattice by 32 terms, to order q^{-79}. On the triangular lattice, we verify Baxter's analytical expression for the bulk free energy (to order q^{-40}), and we are able to conjecture exact product formulae for the surface and corner free energies.Comment: 17 pages. Version 2: added 4 further term to the serie

    A Generalization of Kochen-Specker Sets Relates Quantum Coloring to Entanglement-Assisted Channel Capacity

    Get PDF
    We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. Here, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.Comment: 16 page
    corecore