5 research outputs found

    Adaptive Chaotic Maps in Cryptography Applications

    Get PDF
    Chaotic cryptography is a promising area for the safe and fast transmission, processing, and storage of data. However, many developed chaos-based cryptographic primitives do not meet the size and composition of the keyspace and computational complexity. Another common problem of such algorithms is dynamic degradation caused by computer simulation with finite data representation and rounding of results of arithmetic operations. The known approaches to solving these problems are not universal, and it is difficult to extend them to many chaotic systems. This chapter describes discrete maps with adaptive symmetry, making it possible to overcome several disadvantages of existing chaos-based cryptographic algorithms simultaneously. The property of adaptive symmetry allows stretching, compressing, and rotating the phase space of such maps without significantly changing the bifurcation properties. Therefore, the synthesis of one-way piecewise functions based on adaptive maps with different symmetry coefficients supposes flexible control of the keyspace size and avoidance of dynamic degradation due to the embedded technique of perturbing the chaotic trajectory

    Strictly Toral Dynamics

    Full text link
    This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus T2\mathbb{T}^2 which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points ine(f)ine(f) is shown to be a disjoint union of periodic topological disks ("elliptic islands"), while the set of essential points ess(f)ess(f) is an essential continuum, with typically rich dynamics (the "chaotic region"). This generalizes and improves a similar description by J\"ager. The key result is boundedness of these "elliptic islands", which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in ess(f)ess(f) is as rich as in T2\mathbb{T}^2 from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear in Inv. Mat

    Zaslavsky web map

    No full text

    Adaptive chaotic maps and their application to pseudo-random numbers generation

    Get PDF
    Chaos-based stream ciphers form a prospective class of data encryption techniques. Usually, in chaos-based encryption schemes, the pseudo-random generators based on chaotic maps are used as a source of randomness. Despite the variety of proposed algorithms, nearly all of them possess many shortcomings. While sequences generated from single-parameter chaotic maps can be easily compromised using the phase space reconstruction method, the employment of multi-parametric maps requires a thorough analysis of the parameter space to establish the areas of chaotic behavior. This complicates the determination of the possible keys for the encryption scheme. Another problem is the degradation of chaotic dynamics in the implementation of the digital chaos generator with finite precision. To avoid the appearance of quasi-chaotic regimes, additional perturbations are usually introduced into the chaotic maps, making the generation scheme more complex and influencing the oscillations regime. In this study, we propose a novel technique utilizing the chaotic maps with adaptive symmetry to create chaos-based encryption schemes with larger parameter space. We compare pseudo-random generators based on the traditional Zaslavsky map and the new adaptive Zaslavsky web map through multi-parametric bifurcation analysis and investigate the parameter spaces of the maps. We explicitly show that pseudo-random sequences generated by the adaptive Zaslavsky map are random, have a weak correlation and possess a larger parameter space. We also present the technique of increasing the period of the chaotic sequence based on the variability of the symmetry coefficient. The speed analysis shows that the proposed encryption algorithm possesses a high encryption speed, being compatible with the best solutions in a field. The obtained results can improve the chaos-based cryptography and inspire further studies of chaotic maps as well as the synthesis of novel discrete models with desirable statistical properties
    corecore