81,962 research outputs found
SH3 interactome conserves general function over specific form
Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form
The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans
Date of Acceptance: 13/11/2012 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Correction for Sandai et al., The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast Candida albicans published 20-01-2015 DOI: 10.1128/mBio.02489-14Peer reviewedPublisher PD
Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis
Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-beta-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling
PROPHECY—a database for high-resolution phenomics
The rapid recent evolution of the field phenomics—the genome-wide study of gene dispensability by quantitative analysis of phenotypes—has resulted in an increasing demand for new data analysis and visualization tools. Following the introduction of a novel approach for precise, genome-wide quantification of gene dispensability in Saccharomyces cerevisiae we here announce a public resource for mining, filtering and visualizing phenotypic data—the PROPHECY database. PROPHECY is designed to allow easy and flexible access to physiologically relevant quantitative data for the growth behaviour of mutant strains in the yeast deletion collection during conditions of environmental challenges. PROPHECY is publicly accessible at http://prophecy.lundberg.gu.se
Ageing as a price of cooperation and complexity: Self-organization of complex systems causes the ageing of constituent networks
The analysis of network topology and dynamics is increasingly used for the description of the structure, function and evolution of complex systems. Here we summarize key aspects of the evolvability and robustness of the hierarchical network-set of macromolecules, cells, organisms, and ecosystems. Listing the costs and benefits of cooperation as a necessary behaviour to build this network hierarchy, we outline the major hypothesis of the paper: the emergence of hierarchical complexity needs cooperation leading to the ageing of the constituent networks. Local cooperation in a stable environment may lead to over-optimization developing an ‘always-old’ network, which ages slowly, and dies in an apoptosis-like process. Global cooperation by exploring a rapidly changing environment may cause an occasional over-perturbation exhausting system-resources, causing rapid degradation, ageing and death of an otherwise ‘forever-young’ network in a necrosis-like process. Giving a number of examples we explain how local and global cooperation can both evoke and help successful ageing. Finally, we show how various forms of cooperation and consequent ageing emerge as key elements in all major steps of evolution from the formation of protocells to the establishment of the globalized, modern human society. Thus, ageing emerges as a price of complexity, which is going hand-in-hand with cooperation enhancing each other in a successful community
Mrpl35, A Mitospecific Component of Mitoribosomes, Plays A Key Role in Cytochrome \u3cem\u3eC\u3c/em\u3e Oxidase Assembly
Mitoribosomes perform the synthesis of the core components of the oxidative phosphorylation (OXPHOS) system encoded by the mitochondrial genome. We provide evidence that MrpL35 (mL38), a mitospecific component of the yeast mitoribosomal central protuberance, assembles into a subcomplex with MrpL7 (uL5), Mrp7 (bL27), and MrpL36 (bL31) and mitospecific proteins MrpL17 (mL46) and MrpL28 (mL40). We isolated respiratory defective mrpL35 mutant yeast strains, which do not display an overall inhibition in mitochondrial protein synthesis but rather have a problem in cytochrome coxidase complex (COX) assembly. Our findings indicate that MrpL35, with its partner Mrp7, play a key role in coordinating the synthesis of the Cox1 subunit with its assembly into the COX enzyme and in a manner that involves the Cox14 and Coa3 proteins. We propose that MrpL35 and Mrp7 are regulatory subunits of the mitoribosome acting to coordinate protein synthesis and OXPHOS assembly events and thus the bioenergetic capacity of the mitochondria
Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity
BACKGROUND The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters. RESULTS Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed. CONCLUSION In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members
The future of bioethanol
Yeasts have been domesticated by mankind before horses. After the mastering of alcoholic fermentation for centuries, yeasts have become the protagonist of one of the most important biotechnological industries worldwide: the production of bioethanol. This chapter will initially present some important challenges to be overcome in this industry, both in first and second generation biofuel production. Then, it will briefly revisit some advances obtained in recent years. Finally, it will present and discuss some opportunities, in the scope of metabolic engineering and synthetic biology, that will likely be present in the future of bioethanol
- …
