10 research outputs found

    Learning Spatio-Temporal Representation with Local and Global Diffusion

    Full text link
    Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for visual recognition problems. Nevertheless, the convolutional filters in these networks are local operations while ignoring the large-range dependency. Such drawback becomes even worse particularly for video recognition, since video is an information-intensive media with complex temporal variations. In this paper, we present a novel framework to boost the spatio-temporal representation learning by Local and Global Diffusion (LGD). Specifically, we construct a novel neural network architecture that learns the local and global representations in parallel. The architecture is composed of LGD blocks, where each block updates local and global features by modeling the diffusions between these two representations. Diffusions effectively interact two aspects of information, i.e., localized and holistic, for more powerful way of representation learning. Furthermore, a kernelized classifier is introduced to combine the representations from two aspects for video recognition. Our LGD networks achieve clear improvements on the large-scale Kinetics-400 and Kinetics-600 video classification datasets against the best competitors by 3.5% and 0.7%. We further examine the generalization of both the global and local representations produced by our pre-trained LGD networks on four different benchmarks for video action recognition and spatio-temporal action detection tasks. Superior performances over several state-of-the-art techniques on these benchmarks are reported. Code is available at: https://github.com/ZhaofanQiu/local-and-global-diffusion-networks.Comment: CVPR 201

    Video Action Transformer Network

    Full text link
    We introduce the Action Transformer model for recognizing and localizing human actions in video clips. We repurpose a Transformer-style architecture to aggregate features from the spatiotemporal context around the person whose actions we are trying to classify. We show that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others. Additionally its attention mechanism learns to emphasize hands and faces, which are often crucial to discriminate an action - all without explicit supervision other than boxes and class labels. We train and test our Action Transformer network on the Atomic Visual Actions (AVA) dataset, outperforming the state-of-the-art by a significant margin using only raw RGB frames as input.Comment: CVPR 201

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port
    corecore