5,502 research outputs found

    Designing learning object repositories : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Science in Information Sciences at Massey University

    Get PDF
    Learning object repositories are expanding rapidly into the role of independent educational systems that not only are a supplement to a traditional way of learning, but also allow users to search, exchange and re-use learning objects. The intention of this innovative technology is to have such repositories to collect a database of learning objects catalogued by the learning content management system. However, for users to perform an efficient search, these learning objects would need to use metadata standards or specifications to describe their properties. For learning objects stored within the repositories, metadata standards are often used to descibe them so users of the respositories are able to find the accurate resources they required, hence metadata standards are important elements of any learning object repository. In this paper, a courseware example is used to demonstrate how to define a set of characteristics that we want to describe for our courseware, and attempt to map the data schema in the database with the available metadata standards. The outcome is to identify a set of metadata elements that would fully describe our learning objects stored within the learning object repository, and these metadata elements will also assist instructors to create adaptable courseware that can be reused by different instructors. Metadata standard is known as a critical element for the management of learning objects, not only will it increase the accuracy of the search results, it will also provide more relevant and descriptive information about the learning objects to the searchers

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    Template-driven teacher modelling approach : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Information Science at Massey University, Palmerston North

    Get PDF
    This thesis describes the Template-driven Teacher Modeling Approach, the initial implementation of the template server and the formative evaluation on the prototype. The initiative of Template-driven teacher modeling is to integrate the template server and intelligent teacher models in Web-based education systems for course authoring. There are a number of key components in the proposed system: user interface, template server and content repository. The Template-Driven Teacher Modeling (TDTM) architecture supports the course authoring by providing higher degree of control over the generation of presentation. The collection of accumulated templates in the template repository for a teacher or a group of teachers are selected as the inputs for the inference mechanism in teacher's model to calculate the best representation of the teaching strategy, and then predict teacher intention when he or she interacts with the system. Moreover, the presentation templates are kept to support the re-use of the on-line content at the level of individual screens with the help of Template Server

    Towards a re-engineering method for web services architectures

    Get PDF
    Recent developments in Web technologies – in particular through the Web services framework – have greatly enhanced the flexible and interoperable implementation of service-oriented software architectures. Many older Web-based and other distributed software systems will be re-engineered to a Web services-oriented platform. Using an advanced e-learning system as our case study, we investigate central aspects of a re-engineering approach for the Web services platform. Since our aim is to provide components of the legacy system also as services in the new platform, re-engineering to suit the new development paradigm is as important as re-engineering to suit the new architectural requirements

    A distributed solution to software reuse

    Get PDF
    Reuse can be applied to all stages of the software lifecycle to enhance quality and to shorten time of completion for a project. During the phases of design and implementation are some examples of where reuse can be applied, but one frequent obstruction to development is the building of and the identifying of desirable components. This can be costly in the short term but an organisation can gain the profits of applying this scheme if they are seeking long-term goals. Web services are a recent development in distributed computing. This thesis combines the two research areas to produce a distributed solution to software reuse that displays the advantages of distributed computing within a reuse system. This resulted in a web application with access to web services that allowed two different formats of component to be inserted into a reuse repository. These components were searchable by keywords and the results are adjustable by the popularity of a component’s extraction from the system and by user ratings of it; this improved the accuracy of the search. This work displays the accuracy, usability, and speed of this system when tested with five undergraduate and five postgraduate students

    Supporting collaboration within the eScience community

    Get PDF
    Collaboration is a core activity at the heart of large-scale co- operative scientific experimentation. In order to support the emergence of Grid-based scientific collaboration, new models of e-Science working methods are needed. Scientific collaboration involves production and manipulation of various artefacts. Based on work done in the software engineering field, this paper proposes models and tools which will support the representation and production of such artefacts. It is necessary to provide facilities to classify, organise, acquire, process, share, and reuse artefacts generated during collaborative working. The concept of a "design space" will be used to organise scientific design and the composition of experiments, and methods such as self-organising maps will be used to support the reuse of existing artefacts. It is proposed that this work can be carried out and evaluated in the UK e-Science community, using an "industry as laboratory" approach to the research, building on the knowledge, expertise, and experience of those directly involved in e-Science

    Semantic web technology for web-based teaching and learning: A roadmap

    Get PDF
    The World-Wide Web has become the predominant platform for computer-aided instruction. Contentorientation, access and interactive features have made the Web a successful technology. The Web, however, is still evolving. We expect in particular Semantic Web technology to substantially impact Web-based teaching and learning. In this paper, we examine the potential of this technology and how we expect it to influence content representation and the work of the instructor and the learner

    Supporting collaborative grid application development within the escience community

    Get PDF
    The systemic representation and organisation of software artefacts, e.g. specifications, designs, interfaces, and implementations, resulting from the development of large distributed systems from software components have been addressed by our research within the Practitioner and AMES projects [1,2,3,4]. Without appropriate representations and organisations, large collections of existing software are not amenable to the activities of software reuse and software maintenance, as these activities are likely to be severely hindered by the difficulties of understanding the software applications and their associated components. In both of these projects, static analysis of source code and other development artefacts, where available, and subsequent application of reverse engineering techniques were successfully used to develop a more comprehensive understanding of the software applications under study [5,6]. Later research addressed the maintenance of a component library in the context of component-based software product line development and maintenance [7]. The classic software decompositions, horizontal and vertical, proposed by Goguen [8] influenced all of this research. While they are adequate for static composition, they fail to address the dynamic aspects of composing large distributed software applications from components especially where these include software services. The separation of component co-ordination concerns from component functionality proposed in [9] offers a partial solution
    corecore