1,091,081 research outputs found

    A Pre-Merger Stage Galaxy Cluster: Abell 3733

    Get PDF
    The galaxy cluster Abell 3733 (A3733) is a very suitable candidate in addressing dynamical processes throughout galaxy cluster mergers. This study shows structural analysis results of A3733 (z = 0.038) based on X-ray and optical data. According to X-ray luminosity map, A3733 hosts two sub-structures separated in the sky by \sim 0.25 Mpc, and the two distinct clumps are located in the East (A3733E) and the West (A3733W) directions. Both sub-structures are centred on two different brightest cluster galaxies (BCGs), and the X-ray and optical centroids of both BCGs substantially coincide with each other. The intracluster medium (ICM) temperatures of the sub-structures are estimated to be 2.79 keV for A3733E and 3.28 keV for A3733W. Both sub-structures are found to be hosting cool central gas (kT \sim 1.5-2.5 keV) surrounded by hotter gas (kT \sim 3.0-3.5 keV). Besides, the X-ray concentration parameters are found to be c \sim 0.3 for each sub-structure. These results indicate the existence of cool centres for both sub-structures. The optical density map reveals a crowded galaxy population within the vicinity of A3733W. The high probable (% 88.2) dynamical binding model of A3733 suggests that the cores of sub-structures have a 3D separation of 0.27 Mpc and will collide in 0.14 Gyr with the relative in-falling velocity of 1936 km s1^{-1}. As a conclusion, this study demonstrates some evidence suggesting that the A3733 system is in the pre-merger state.Comment: 9 pages, 7 Figures, published by MNRA

    A detailed X-ray investigation of zeta Puppis IV. Further characterization of the variability

    Get PDF
    Previously, the X-ray emission of zeta Puppis was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length. The origin of these changes was proposed to be linked to large-scale structures in the wind, but further characterization of the variability at high energies was needed. Since then, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. We analysed these new X-ray data, revisited the old data, and compared X-ray with optical data, including when simultaneous. We found that the behaviour in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, zeta Puppis was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78d, although the simultaneous optical behaviour is unknown. The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.Comment: accepted for publication by A&

    X-rays from the radio halo of Virgo A = M87

    Get PDF
    The purpose of this study is to investigate in more detail the associated X-ray and radio emission in the Virgo A halo discovered by SGF. Improved Einstein HRI data and new radio maps obtained with the Very Large Array are described and the relation between the X-ray and radio structures is carefully examined. Several possible explanations are presented for the X-ray emission. The inverse compton model is found to be viable only if the magnetic field is variable and substantially weaker than the equipartition value. The principal alternative is excess thermal X-rays due to compression of the intracluster medium by the radio lobe. In either case, the association of such prominent radio and X-ray structures is unique among known radio galaxies

    Quantitative Imaging of Single, Unstained Viruses with Coherent X-rays

    Full text link
    Since Perutz, Kendrew and colleagues unveiled the structure of hemoglobin and myoglobin based on X-ray diffraction analysis in the 1950s, X-ray crystallography has become the primary methodology used to determine the 3D structure of macromolecules. However, biological specimens such as cells, organelles, viruses and many important macromolecules are difficult or impossible to crystallize, and hence their structures are not accessible by crystallography. Here we report, for the first time, the recording and reconstruction of X-ray diffraction patterns from single, unstained viruses. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative X-ray imaging of a broad range of specimens from protein machineries, viruses and organelles to whole cells. Moreover, our experiment is directly transferable to the use of X-ray free electron lasers, and represents a major experimental milestone towards the X-ray imaging of single macromolecules.Comment: 16 pages, 5 figure

    An extension of the SHARC survey

    Full text link
    We report on our search for distant clusters of galaxies based on optical and X-ray follow up observations of X-ray candidates from the SHARC survey. Based on the assumption that the absence of bright optical or radio counterparts to possibly extended X-ray sources could be distant clusters. We have obtained deep optical images and redshifts for several of these objects and analyzed archive XMM-Newton or Chandra data where applicable. In our list of candidate clusters, two are probably galaxy structures at redshifts of z\sim0.51 and 0.28. Seven other structures are possibly galaxy clusters between z\sim0.3 and 1. Three sources are identified with QSOs and are thus likely to be X-ray point sources, and six more also probably fall in this category. One X-ray source is spurious or variable. For 17 other sources, the data are too sparse at this time to put forward any hypothesis on their nature. We also serendipitously detected a cluster at z=0.53 and another galaxy concentration which is probably a structure with a redshift in the [0.15-0.6] range. We discuss these results within the context of future space missions to demonstrate the necessity of a wide field of view telescope optimized for the 0.5-2 keV range.Comment: Accepted in A&
    corecore