791,048 research outputs found

    X-ray Diffraction Tomographic Imaging and Reconstruction

    Full text link
    Material discrimination based on conventional or dual energy X-ray computed tomography (CT) imaging can be ambiguous. X-ray diffraction imaging (XDI) can be used to construct diffraction profiles of objects, providing new molecular signature information that can be used to characterize the presence of specific materials. Combining X-ray CT and diffraction imaging can lead to enhanced detection and identification of explosives in luggage screening. In this work we are investigating techniques for joint reconstruction of CT absorption and X-ray diffraction profile images of objects to achieve improved image quality and enhanced material classification. The initial results have been validated via simulation of X-ray absorption and coherent scattering in 2 dimensions.U. S. Department of Homeland Security (2008-ST-061-ED0001

    Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    Full text link
    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for {\it in situ}, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon energy, high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<<100 ps) and spatial (\sim2 μ\mum) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading

    X-ray high-resolution diffraction using refractive lenses

    Get PDF
    Refractive x-ray lenses have recently been applied for imaging and scanning microscopy with hard x rays. We report the application of refractive lenses in an optical scheme for high-resolution x-ray diffraction, performed at a high brilliance synchrotron radiation source. An experimental proof of principle and a theoretical discussion are presented. In particular, we observe the x-ray diffraction pattern from a two-dimensional photonic crystal with 4.2 µm periodicity, which normally is employed to scatter light in the infrared

    Impact of ultrafast electronic damage in single particle x-ray imaging experiments

    Full text link
    In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.Comment: 15 pages, 3 figures submitted to PR

    X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd,Nd)5Si4 compounds

    Full text link
    Representative compounds of the new family of magnetic materials Gd5-xNdxSi4 were analyzed by X-ray diffraction at the XRD1 beamline at LNLS. To reduce X-ray absorption, thin layers of the powder samples were mounted outside the capillaries and measured in Debye-Scherrer geometry as usual. The X-ray diffraction analyses and the magnetometry results indicate that the behavior of the magnetic transition temperature as a function of Nd content may be directly related to the average of the four smallest interatomic distances between different rare earth sites of the majority phase of each compound. The quality and consistency of the results show that the XRD1 beamline is able to perform satisfactory X-ray diffraction experiments on high-absorption materials even off the best conditions.Comment: 12 pages, 3 figures, 3 table

    X-Ray sum frequency generation; direct imaging of ultrafast electron dynamics

    Get PDF
    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved X-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear X-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband X-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor/acceptor substituted stilbene

    Twins and their boundaries during homoepitaxy on Ir(111)

    Full text link
    The growth and annealing behavior of strongly twinned homoepitaxial films on Ir(111) has been investigated by scanning tunneling microscopy, low energy electron diffraction and surface X-ray diffraction. In situ surface X-ray diffraction during and after film growth turned out to be an efficient tool for the determination of twin fractions in multilayer films and to uncover the nature of side twin boundaries. The annealing of the twin structures is shown to take place in a two step process, reducing first the length of the boundaries between differently stacked areas and only then the twins themselves. A model for the structure of the side twin boundaries is proposed which is consistent with both the scanning tunneling microscopy and surface X-ray diffraction data.Comment: 13 pages, 11 figure

    Quantitative Imaging of Single, Unstained Viruses with Coherent X-rays

    Full text link
    Since Perutz, Kendrew and colleagues unveiled the structure of hemoglobin and myoglobin based on X-ray diffraction analysis in the 1950s, X-ray crystallography has become the primary methodology used to determine the 3D structure of macromolecules. However, biological specimens such as cells, organelles, viruses and many important macromolecules are difficult or impossible to crystallize, and hence their structures are not accessible by crystallography. Here we report, for the first time, the recording and reconstruction of X-ray diffraction patterns from single, unstained viruses. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative X-ray imaging of a broad range of specimens from protein machineries, viruses and organelles to whole cells. Moreover, our experiment is directly transferable to the use of X-ray free electron lasers, and represents a major experimental milestone towards the X-ray imaging of single macromolecules.Comment: 16 pages, 5 figure
    corecore