77 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK

    Get PDF
    Nowadays Mobile Ad Hoc Network (MANET) is an emerging area of research to provide various communication services to end users. Mobile Ad Hoc Networks (MANETs) are self-organizing wireless networks where nodes communicate with each other without a fixed infrastructure. Due to their unique characteristics, such as mobility, autonomy, and ad hoc connectivity, MANETs have become increasingly popular in various applications, including military, emergency response, and disaster management. However, the lack of infrastructure and dynamic topology of MANETs pose significant challenges to designing a secure and efficient routing protocol. This paper proposes an adaptive, secure, and efficient routing protocol that can enhance the performance of MANET. The proposed protocol incorporates various security mechanisms, including authentication, encryption, key management, and intrusion detection, to ensure secure routing. Additionally, the protocol considers energy consumption, network load, packet delivery fraction, route acquisition latency, packets dropped and Quality of Service (QoS) requirements of the applications to optimize network performance. Overall, the secure routing protocol for MANET should provide a reliable and secure communication environment that can adapt to the dynamic nature of the network. The protocol should ensure that messages are delivered securely and efficiently to the intended destination, while minimizing the risk of attacks and preserving the network resources Simulation results demonstrate that the proposed protocol outperforms existing routing protocols in terms of network performance and security. The proposed protocol can facilitate the deployment of various applications in MANET while maintaining security and efficiency

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks

    Get PDF
    Security is one of the major and important issues surrounding network sensors because of its inherent liabilities, i.e. physical size. Since network sensors have no routers, all nodes involved in the network must share the same routing protocol to assist each other for the transmission of packets. Also, its unguided nature in dynamic topology makes it vulnerable to all kinds of security attack, thereby posing a degree of security challenges. Wormhole is a prominent example of attacks that poses the greatest threat because of its difficulty in detecting and preventing. In this paper, we proposed a wormhole attach detection and prevention mechanism incorporated AODV routing protocol, using neighbour discovery and path verification mechanism. As compared to some preexisting methods, the proposed approach is effective and promising based on applied performance metrics

    Securing Weight-Based AODV (WBAODV) Routing Protocol in MANETs: Towards Efficient and Secure Routing Protocol

    Get PDF
    An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration. There are number of routing protocols developed by researchers. Due to the nature of ad hoc networks, secure routing is an important area of research in developing secured routing protocols. Although researchers have proposed several secure routing protocols, their resistance towards various types of security attacks and efficiency are primary points of concern in implementing these protocols. After the evaluation of these protocols the results refer that they do not give complete protection against possible attacks and have some disadvantages on their performance. In this research, we examined a new routing protocol called Weight-Based Ad hoc On-demand Distance Vector (WBAODV) routing protocol which is efficient and superior of the standard Ad hoc On-demand Distance Vector (AODV) routing protocol in performance, but is not secure. So we proposed a new secure routing protocol based on WBAODV which will be efficient and also immune against the most commonly possible routing attacks. Finally we analyzed the proposed protocol against many attacks to ensure its security and also subject it to extensive simulation tests using JiST/SWAN simulation tool with the most commonly well-known ad hoc performance metrics to ensure its efficiency

    A Survey of Security Challenges and Issues in Manet

    Get PDF
    Nodes intriguing element in Mobile Ad-hoc Networks (MANET) are predictable to hold to the rules stated by the routing protocol utilized in the network. Safe routing protocols endeavor to decrease the ill-effect of nodes under the control of malicious entities who intentionally violate the protocol.. There are so many generic tools which are universal for individual as well as organizations for customers to offer protection which comprises Antivirus, Ant spam, etc., and network securities have turn into important issue in MANET. Security is one of the major issues in the MANET particularly w.r.t. complexity and size of the network. The main focus of this survey is to discuss & represent special characteristics of security in MANET and also apply several of the solutions security threats within MANET network similar to intruder activities, tapping and integrity, MANET link layer and network layer operations w.r.t. information security etc) w.r.t. MANET network. This Survey paper also discusses different number of security scenarios of MANET, Attacks in MANET and IDS in MANET. Keywords: AODV, MANET, Network Security, IDS, Attack

    Unified architecture of mobile ad hoc network security (MANS) system

    Get PDF
    In this dissertation, a unified architecture of Mobile Ad-hoc Network Security (MANS) system is proposed, under which IDS agent, authentication, recovery policy and other policies can be defined formally and explicitly, and are enforced by a uniform architecture. A new authentication model for high-value transactions in cluster-based MANET is also designed in MANS system. This model is motivated by previous works but try to use their beauties and avoid their shortcomings, by using threshold sharing of the certificate signing key within each cluster to distribute the certificate services, and using certificate chain and certificate repository to achieve better scalability, less overhead and better security performance. An Intrusion Detection System is installed in every node, which is responsible for colleting local data from its host node and neighbor nodes within its communication range, pro-processing raw data and periodically broadcasting to its neighborhood, classifying normal or abnormal based on pro-processed data from its host node and neighbor nodes. Security recovery policy in ad hoc networks is the procedure of making a global decision according to messages received from distributed IDS and restore to operational health the whole system if any user or host that conducts the inappropriate, incorrect, or anomalous activities that threaten the connectivity or reliability of the networks and the authenticity of the data traffic in the networks. Finally, quantitative risk assessment model is proposed to numerically evaluate MANS security

    A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions

    Full text link
    Thanks to the rapidly developing technology, unmanned aerial vehicles (UAVs) are able to complete a number of tasks in cooperation with each other without need for human intervention. In recent years, UAVs, which are widely utilized in military missions, have begun to be deployed in civilian applications and mostly for commercial purposes. With their growing numbers and range of applications, UAVs are becoming more and more popular; on the other hand, they are also the target of various threats which can exploit various vulnerabilities of UAV systems in order to cause destructive effects. It is therefore critical that security is ensured for UAVs and the networks that provide communication between UAVs. In this survey, we aimed to present a comprehensive detailed approach to security by classifying possible attacks against UAVs and flying ad hoc networks (FANETs). We classified the security threats into four major categories that make up the basic structure of UAVs; hardware attacks, software attacks, sensor attacks, and communication attacks. In addition, countermeasures against these attacks are presented in separate groups as prevention and detection. In particular, we focus on the security of FANETs, which face significant security challenges due to their characteristics and are also vulnerable to insider attacks. Therefore, this survey presents a review of the security fundamentals for FANETs, and also four different routing attacks against FANETs are simulated with realistic parameters and then analyzed. Finally, limitations and open issues are also discussed to direct future wor
    • …
    corecore