3 research outputs found

    Integrating the UB-Tree into a Database System Kernel

    Get PDF
    Multidimensional access methods have shown high potential for significant performance improvements in various application domains

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    A Methodology for Modelling Mobile Agent-Based Systems (Mobile agent Mobility Methodology - MaMM)

    Get PDF
    Mobile agents are a particular type of agents that have all the characteristics of an agent and also demonstrate the ability to move or migrate from one node to another in a network environment. Mobile agents have received considerable attention from industry and the research community in recent times due to the fact that their special characteristic of migration help address issues such as network overload, network latency and protocol encapsulation. Due to the current focus in exploiting agent technology mainly in a research environment, there has been an influx of software engineering methodologies for developing multi-agent systems. However, little attention has been given to modelling mobile agents. For mobile agent-based systems to become more widely accepted there is a critical need for a methodology to be developed to address various issues related to modelling mobility of agent . This research study provides an overview of the current approaches, methodologies and modelling languages that can be used for developing multi-agent systems. The overview indicates extensive research on methodologies for modelling multi-agent systems and little on mobility in mobile agent-based systems. An original contribution in this research known as Mobile agent-based Mobility Methodology (MaMM) is the methodology for modelling mobility in mobile agent-based systems using underlying principles of Genetic Algorithms (GA) with emphasis on fitness functions and genetic representation. Delphi study and case studies were employed in carrying out this research
    corecore