4 research outputs found

    Cable Robot Performance Evaluation by Wrench Exertion Capability

    Get PDF
    Although cable driven robots are a type of parallel manipulators, the evaluation of their performances cannot be carried out using the performance indices already developed for parallel robots with rigid links. This is an obvious consequence of the peculiar features of flexible cables-a cable can only exert a tensile and limited force in the direction of the cable itself. A comprehensive performance evaluation can certainly be attained by computing the maximum force (or torque) that can be exerted by the cables on the moving platform along a specific (or any) direction within the whole workspace. This is the idea behind the index-called the Wrench Exertion Capability (WEC)-which can be employed to evaluate the performance of any cable robot topology and is characterized by an efficient and simple formulation based on linear programming. By significantly improving a preliminary computation method for the WEC, this paper proposes an ultimate formulation suitable for any cable robot topology. Several numerical investigations on planar and spatial cable robots are presented to give evidence of the WEC usefulness, comparisons with popular performance indices are also provided

    Workspace Limiting Strategy for 6 DOF Force Controlled PKMs Manipulating High Inertia Objects

    No full text
    This article describes an efficient and effective strategy for limiting the workspace of a six degrees of freedom parallel manipulator, with challenging motion smoothness requirements due to both the high inertia objects carried by the end effector and the pose references coming from a force feedback loop. Firstly, a suitable formulation of the workspace is studied, distinguishing between different conventions and procedures. Thereafter a discrete and analytical formulation of the workspace is obtained and developed in order to suit this application. Having obtained the limits, a methodology to evaluate the robot pose is discussed, taking into account the reference pose buffering technique and the real time pose estimation through the numeric solution of the nonlinear forward kinematics equations. The safety algorithm designed checks the actual robot pose and future poses to be commanded, and takes control of the reference pose generation process, if an exit of the safety workspace is detected. The result obtained is a soft compliant surface within which the robot is free to move, but outside of which a “force field” pushes the robot end-effector to return smoothly. To reach this objective, the control deflects the end effector trajectory safely and smoothly and moves it back to within the workspace limits. Nevertheless, this preserves the continuity of the velocity and controls the acceleration, to avoid dangerous vibrations and shocks. Simulation and experimental result tests are conducted to verify the algorithm effectiveness and the efficient implementation

    Workspace Limiting Strategy for 6 DOF Force Controlled PKMs Manipulating High Inertia Objects

    No full text
    This article describes an efficient and effective strategy for limiting the workspace of a six degrees of freedom parallel manipulator, with challenging motion smoothness requirements due to both the high inertia objects carried by the end effector and the pose references coming from a force feedback loop. Firstly, a suitable formulation of the workspace is studied, distinguishing between different conventions and procedures. Thereafter a discrete and analytical formulation of the workspace is obtained and developed in order to suit this application. Having obtained the limits, a methodology to evaluate the robot pose is discussed, taking into account the reference pose buffering technique and the real time pose estimation through the numeric solution of the nonlinear forward kinematics equations. The safety algorithm designed checks the actual robot pose and future poses to be commanded, and takes control of the reference pose generation process, if an exit of the safety workspace is detected. The result obtained is a soft compliant surface within which the robot is free to move, but outside of which a “force field” pushes the robot end-effector to return smoothly. To reach this objective, the control deflects the end effector trajectory safely and smoothly and moves it back to within the workspace limits. Nevertheless, this preserves the continuity of the velocity and controls the acceleration, to avoid dangerous vibrations and shocks. Simulation and experimental result tests are conducted to verify the algorithm effectiveness and the efficient implementation
    corecore