1,353 research outputs found

    Polyphonic sound event and sound activity detection: a multi-task approach

    Get PDF
    Polyphonic Sound Event Detection (SED) in real-world recordings is a challenging task because of the dynamic polyphony level, intensity, and duration of sound events. Current polyphonic SED systems fail to model the temporal structure of sound events explicitly and instead attempt to look at which sound events are present at each audio frame. Consequently, the event-wise detection performance is much lower than the segment-wise detection performance. In this work, we propose a joint model approach to improve the temporal localization of sound events using a multi-task learning setup. The first task predicts which sound events are present at each time frame; we call this branch 'Sound Event Detection (SED) model', while the second task predicts if a sound event is present or not at each frame; we call this branch 'Sound Activity Detection (SAD) model'. We verify the proposed joint model by comparing it with a separate implementation of both tasks aggregated together from individual task predictions. Our experiments on the URBAN-SED dataset show that the proposed joint model can alleviate False Positive (FP) and False Negative (FN) errors and improve both the segment-wise and the event-wise metrics

    General Purpose Audio Effect Removal

    Get PDF
    Although the design and application of audio effects is well understood, the inverse problem of removing these effects is significantly more challenging and far less studied. Recently, deep learning has been applied to audio effect removal; however, existing approaches have focused on narrow formulations considering only one effect or source type at a time. In realistic scenarios, multiple effects are applied with varying source content. This motivates a more general task, which we refer to as general purpose audio effect removal. We developed a dataset for this task using five audio effects across four different sources and used it to train and evaluate a set of existing architectures. We found that no single model performed optimally on all effect types and sources. To address this, we introduced RemFX, an approach designed to mirror the compositionality of applied effects. We first trained a set of the best-performing effect-specific removal models and then leveraged an audio effect classification model to dynamically construct a graph of our models at inference. We found our approach to outperform single model baselines, although examples with many effects present remain challenging

    Perceptual musical similarity metric learning with graph neural networks

    Get PDF
    Sound retrieval for assisted music composition depends on evaluating similarity between musical instrument sounds, which is partly influenced by playing techniques. Previous methods utilizing Euclidean nearest neighbours over acoustic features show some limitations in retrieving sounds sharing equivalent timbral properties, but potentially generated using a different instrument, playing technique, pitch or dynamic. In this paper, we present a metric learning system designed to approximate human similarity judgments between extended musical playing techniques using graph neural networks. Such structure is a natural candidate for solving similarity retrieval tasks, yet have seen little application in modelling perceptual music similarity. We optimize a Graph Convolutional Network (GCN) over acoustic features via a proxy metric learning loss to learn embeddings that reflect perceptual similarities. Specifically, we construct the graph's adjacency matrix from the acoustic data manifold with an example-wise adaptive k-nearest neighbourhood graph: Adaptive Neighbourhood Graph Neural Network (AN-GNN). Our approach achieves 96.4% retrieval accuracy compared to 38.5% with a Euclidean metric and 86.0% with a multilayer perceptron (MLP), while effectively considering retrievals from distinct playing techniques to the query example

    Broadband DOA estimation using Convolutional neural networks trained with noise signals

    Full text link
    A convolution neural network (CNN) based classification method for broadband DOA estimation is proposed, where the phase component of the short-time Fourier transform coefficients of the received microphone signals are directly fed into the CNN and the features required for DOA estimation are learnt during training. Since only the phase component of the input is used, the CNN can be trained with synthesized noise signals, thereby making the preparation of the training data set easier compared to using speech signals. Through experimental evaluation, the ability of the proposed noise trained CNN framework to generalize to speech sources is demonstrated. In addition, the robustness of the system to noise, small perturbations in microphone positions, as well as its ability to adapt to different acoustic conditions is investigated using experiments with simulated and real data.Comment: Published in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 201

    Automated Audio Captioning with Recurrent Neural Networks

    Full text link
    We present the first approach to automated audio captioning. We employ an encoder-decoder scheme with an alignment model in between. The input to the encoder is a sequence of log mel-band energies calculated from an audio file, while the output is a sequence of words, i.e. a caption. The encoder is a multi-layered, bi-directional gated recurrent unit (GRU) and the decoder a multi-layered GRU with a classification layer connected to the last GRU of the decoder. The classification layer and the alignment model are fully connected layers with shared weights between timesteps. The proposed method is evaluated using data drawn from a commercial sound effects library, ProSound Effects. The resulting captions were rated through metrics utilized in machine translation and image captioning fields. Results from metrics show that the proposed method can predict words appearing in the original caption, but not always correctly ordered.Comment: Presented at the 11th IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 201

    Multi-scale Multi-band DenseNets for Audio Source Separation

    Full text link
    This paper deals with the problem of audio source separation. To handle the complex and ill-posed nature of the problems of audio source separation, the current state-of-the-art approaches employ deep neural networks to obtain instrumental spectra from a mixture. In this study, we propose a novel network architecture that extends the recently developed densely connected convolutional network (DenseNet), which has shown excellent results on image classification tasks. To deal with the specific problem of audio source separation, an up-sampling layer, block skip connection and band-dedicated dense blocks are incorporated on top of DenseNet. The proposed approach takes advantage of long contextual information and outperforms state-of-the-art results on SiSEC 2016 competition by a large margin in terms of signal-to-distortion ratio. Moreover, the proposed architecture requires significantly fewer parameters and considerably less training time compared with other methods.Comment: to appear at WASPAA 201
    corecore