2 research outputs found

    A novel service discovery model for decentralised online social networks.

    Get PDF
    Online social networks (OSNs) have become the most popular Internet application that attracts billions of users to share information, disseminate opinions and interact with others in the online society. The unprecedented growing popularity of OSNs naturally makes using social network services as a pervasive phenomenon in our daily life. The majority of OSNs service providers adopts a centralised architecture because of its management simplicity and content controllability. However, the centralised architecture for large-scale OSNs applications incurs costly deployment of computing infrastructures and suffers performance bottleneck. Moreover, the centralised architecture has two major shortcomings: the single point failure problem and the lack of privacy, which challenges the uninterrupted service provision and raises serious privacy concerns. This thesis proposes a decentralised approach based on peer-to-peer (P2P) networks as an alternative to the traditional centralised architecture. Firstly, a self-organised architecture with self-sustaining social network adaptation has been designed to support decentralised topology maintenance. This self-organised architecture exhibits small-world characteristics with short average path length and large average clustering coefficient to support efficient information exchange. Based on this self-organised architecture, a novel decentralised service discovery model has been developed to achieve a semantic-aware and interest-aware query routing in the P2P social network. The proposed model encompasses a service matchmaking module to capture the hidden semantic information for query-service matching and a homophily-based query processing module to characterise user’s common social status and interests for personalised query routing. Furthermore, in order to optimise the efficiency of service discovery, a swarm intelligence inspired algorithm has been designed to reduce the query routing overhead. This algorithm employs an adaptive forwarding strategy that can adapt to various social network structures and achieves promising search performance with low redundant query overhead in dynamic environments. Finally, a configurable software simulator is implemented to simulate complex networks and to evaluate the proposed service discovery model. Extensive experiments have been conducted through simulations, and the obtained results have demonstrated the efficiency and effectiveness of the proposed model.University of Derb

    A prescriptive analytics approach for energy efficiency in datacentres.

    Get PDF
    Given the evolution of Cloud Computing in recent years, users and clients adopting Cloud Computing for both personal and business needs have increased at an unprecedented scale. This has naturally led to the increased deployments and implementations of Cloud datacentres across the globe. As a consequence of this increasing adoption of Cloud Computing, Cloud datacentres are witnessed to be massive energy consumers and environmental polluters. Whilst the energy implications of Cloud datacentres are being addressed from various research perspectives, predicting the future trend and behaviours of workloads at the datacentres thereby reducing the active server resources is one particular dimension of green computing gaining the interests of researchers and Cloud providers. However, this includes various practical and analytical challenges imposed by the increased dynamism of Cloud systems. The behavioural characteristics of Cloud workloads and users are still not perfectly clear which restrains the reliability of the prediction accuracy of existing research works in this context. To this end, this thesis presents a comprehensive descriptive analytics of Cloud workload and user behaviours, uncovering the cause and energy related implications of Cloud Computing. Furthermore, the characteristics of Cloud workloads and users including latency levels, job heterogeneity, user dynamicity, straggling task behaviours, energy implications of stragglers, job execution and termination patterns and the inherent periodicity among Cloud workload and user behaviours have been empirically presented. Driven by descriptive analytics, a novel user behaviour forecasting framework has been developed, aimed at a tri-fold forecast of user behaviours including the session duration of users, anticipated number of submissions and the arrival trend of the incoming workloads. Furthermore, a novel resource optimisation framework has been proposed to avail the most optimum level of resources for executing jobs with reduced server energy expenditures and job terminations. This optimisation framework encompasses a resource estimation module to predict the anticipated resource consumption level for the arrived jobs and a classification module to classify tasks based on their resource intensiveness. Both the proposed frameworks have been verified theoretically and tested experimentally based on Google Cloud trace logs. Experimental analysis demonstrates the effectiveness of the proposed framework in terms of the achieved reliability of the forecast results and in reducing the server energy expenditures spent towards executing jobs at the datacentres.N/
    corecore